Block modeling reserves estimation
DOI:
https://doi.org/10.31643/2026/6445.44Keywords:
block modeling, reserves model, regularization, mineable shapes optimization, losses and dilution, economic efficiency, selective mining.Abstract
The article presents a methodology for resource estimation of a phosphate deposit based on block modeling. The advantages of applying regularization and geometric optimization algorithms for mineable units are demonstrated, ensuring more accurate differentiation of ore grades and a reduction in ore losses and dilution. A comparative analysis is conducted on the excavation of pit benches with varying slope angles and equipment configurations. It is established that a block size of 5m ×5m provides an optimal balance between model accuracy and equipment productivity. The most effective slope angle of the benches is determined based on equipment performance and cost-efficiency. The results contribute to improving the accuracy of resource forecasting and the overall economic viability of deposit development by significantly reducing operating costs and enhancing the quality of extracted material. The study outlines practical approaches to selecting appropriate equipment configurations for different mining scenarios. Special attention is paid to the influence of excavation geometry on the performance of hydraulic excavators. The methodology proposed can be applied to similar deposits with complex morphology. The research findings may serve as a basis for developing more adaptive and data-driven mine planning strategies.
Downloads
References
McManus S, Rahman A, Coombes J, Horta A. Uncertainty assessment of spatial domain models in early stage mining projects – A review. Ore Geology Reviews. 2021; 131:104098. https://doi.org/10.1016/j.oregeorev.2021.104098
Stadnik DA, Stadnik NM, Zhilin AG, Lopushnyak EV. Methodological framework for implicit modeling of solid mineral deposits in automated design. Gornyi Zhurnal. 2023; 51:185–194. https://doi.org/10.25018/0236_1493_2023_51_0_185
Rossi ME, Deutsch CV. Mineral resource estimation. Dordrecht: Springer. 2014. https://doi.org/10.1007/978-1-4020-5717-5
Emery X, Matheron G. Uncertainty quantification in mineral resource estimation. Natural Resources Research. 2024; 33: 1101–1125. https://doi.org/10.1007/s11053-024-10394-6
Kantemirov VD, Yakovlev AM, Titov RS. Primenenie geoinformatsionnykh tekhnologiy blochnogo modelirovaniya dlya sovershenstvovaniya metodov otsenki kachestvennykh pokazateley poleznykh iskopaemykh [Application of GIS-based block modeling technologies to improve methods of assessing quality indicators of mineral resources]. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal = Journal of Mining Science. 2021;(1):63–73. (in Russ.). https://doi.org/10.21440/0536-1028-2021-1-63-73
Vostrikov AV, Prokofeva EN, Gribanov IV, Goncharenko SN. Analytical modeling for the modern mining industry. Eurasian Mining. 2019; (2):30–35. https://doi.org/10.17580/em.2019.02.07
Plan gornykh rabot dobychi fosforitov otkrytym sposobom na mestorozhdenii Kokzhon uchastka Kistas na 2024–2040 gg. Poyasnitelnaya zapiska. Kniga 1 [Mining plan for open-pit phosphate mining at the Kokzhon deposit, Kistas mine, for 2024–2040. Explanatory note. Book 1]. Ust-Kamenogorsk. 2023, 142. (in Russ.).
Marinin M, Marinina O, Wolniak R. Assessing of losses and dilution impact on the cost chain: case study of gold ore deposits. Sustainability. 2021; 13(7):3830. https://doi.org/10.3390/su13073830
Kantemirov VD, Titov RS, Yakovlev AM, Timokhin AV. Metodika otsenki sverkhnormativnykh poter poleznogo iskopaemogo pri razrabotke slozhnostrukturnykh mestorozhdeniy [Methodology for evaluating excess mineral losses in the development of structurally complex deposits]. Problemy nedropol'zovaniya = Subsoil Use Issues. 2024, 47–56. (in Russ.). https://doi.org/10.25635/2313-1586.2024.01.047
Kantemirov VD, Titov RS, Timochin AV, Yakovlev AM. Sovershenstvovanie metodov ucheta povyshennykh poter' i razubozhivaniya poleznogo iskopaemogo pri dobyche [Improvement of methods for accounting increased losses and dilution of mineral resources during mining]. Gornyi informatsionno-analiticheskii byulleten' = Mining Informational-Analytical Bulletin. 2020; 3-1:453–464. (in Russ.). https://doi.org/10.25018/0236-1493-2020-31-0-453-464
Alikulov Sh, Toshov J, Mussin R, Rabatuly M, Tolovkhan B, Bogzhanova Zh, Gabitova A. Study of rational solution parameters during in-situ uranium leaching. Mining of Mineral Deposits. 2025; 19(1):37–46. https://doi.org/10.33271/mining19.01.037
Zamaliyev NM, Zhalbypov ZhD, Valiev NG, Akhmatnurov DR, Zhansejtov AT. Development of proposals to improve the inpit crushing and conveying system (IPCC) for the Bozshakol deposit. Ugol. 2024; 2:58–64. https://doi.org/10.18796/0041-5790-2024-2-58-64
Zhong D-Y, Wang L-G, Jia M-T, Bi L, Zhang J. Orebody modeling from non-parallel cross sections with geometry constraints. Minerals. 2019; 9(4):229. https://doi.org/10.3390/min9040229
Dimitrakopoulos R. Conditional simulation algorithms for modelling orebody uncertainty in open pit optimisation. Geostatistics for Natural Resources Characterization. 2007; 2:173–179. https://doi.org/10.1080/09208118908944041
Serdyukov AL, Zaporozhets VYu, Kudryashov VS, Levin EL. Komp'yuternoe proektirovanie i planirovanie gornykh rabot v kar'ere s dinamicheskoy otsenkoy poter' i zasoreniya poleznogo iskopaemogo pri dobyche [Computer-aided design and mine planning with dynamic assessment of mineral losses and contamination during extraction]. Trudy Instituta Gornogo Dela im. D.A. Kunayeva (Proceedings of the D.A. Kunayev Mining Institute). 2015; 87:180–185. (in Russ.). http://www.igd.com.kz/pdf/87.pdf
Bertinshaw R, Lipton I. Estimation of mining factors (ore dilution and loss) in open pits. Australasian Institute of Mining and Metallurgy (AusIMM). 2007, 13–18. https://www.ausimm.com/publications/conference-proceedings/sixth-large-open-pit-mining-conference-2007/estimating-mining-factors-dilution-and-ore-loss-in-open-pit-mines/
Muttaqin BIA, Ciptomulyono U, Siswanto N. Optimizing cut-off grades under stochastic price: A model for open-pit lateritic nickel mining with multiple products. Resources Policy. 2025; 87:105630. https://doi.org/10.1016/j.resourpol.2025.105630
Kaputin YuE. Modelirovanie mestorozhdeniy i otsenka mineral'nykh resursov s ispol'zovaniem STUDII 3: uchebnyi kurs [Modeling of deposits and mineral resource estimation using Studio 3: training course]. Saint Petersburg. 2007, 188. (in Russ.). https://www.geokniga.org/bookfiles/geokniga-modelirovanie-mestorozhdeniy-i-ocenka-resursov.pdf
Mokos P, Glover I. Mineable Shape Optimizer. Version 5.0.2. Alford Mining Systems. 2022, 217.
Kantemirov VD, Yakovlev AM, Titov RS. Primenenie geoinformatsionnykh tekhnologiy blochnogo modelirovaniya dlya sovershenstvovaniya metodov otsenki kachestvennykh pokazateley poleznykh iskopaemykh [Application of GIS block modeling technologies for improving methods of assessing quality indicators of mineral resources]. Izvestiya vysshikh uchebnykh zavedeniy. Gornyi zhurnal = News of Higher Educational Institutions. Mining Journal. 2021; 1:63–73. (in Russ.). https://doi.org/10.21440/0536-1028-2021-1-63-73
Komatsu Ltd. Hydraulic Excavator PC1250-11: Product Brochure. Tokyo: Komatsu Ltd. 2022. https://www.komatsu.co.za/sites/default/files/2022-02/PC1250-11R_CEN00903-00_0.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R.A. Mussin, M.G. Yachsishin, A.V. Golik, D.R. Akhmatnurov

This work is licensed under a Creative Commons Attribution 4.0 International License.