Pyrolysis of synthetic copper telluride in an inert atmosphere
DOI:
https://doi.org/10.31643/2025/6445.41Keywords:
pyrolysis, tellurium, copper, copper telluride, phase composition, thermal analysisAbstract
The paper presents the study results of the thermal behavior of synthetic copper telluride in an inert atmosphere at pressures of 92 and 0.07 kPa under isothermal and non-isothermal vacuum-thermal conditions. The thermal analysis results showed that the synthesized copper telluride undergoes polymorphic transformations at 185.7, 259, 318, 350, 470, and 834.5 °C. These transformations were established by early studies and are characteristic of copper tellurides of stoichiometric and non-stoichiometric compositions. It was found that the reduction of the pressure in the system slightly increases the final value of mass loss of the synthetic sample. The X-ray phase analysis results of the residues obtained at constant and increasing temperatures at a pressure of 0.07 kPa showed the absence of the formation of new phases relative to the initial composition. A change in the quantitative ratio of the available phases was found in the direction of an increase in the amount of Cu0.656Te0.344 relative to the initial composition with an increase in the process temperature.
Downloads
References
Gao T, Lv J, Zhou J, Li Y, Li Z. Innovative technology and mechanism for comprehensive recovery of copper, nickel, zinc and iron in electroplating sludge. Separation and Purification Technology. 2024; 336: 126226. https://doi.org/10.1016/j.seppur.2023.126226
Koizhanova A, Kenzhaliyev B, Magomedov D, Erdenova M, Bakrayeva A, Abdyldaev N. Hydrometallurgical studies on the leaching of copper from man-made mineral formations. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2024; 330(3):32-42. https://doi.org/10.31643/2024/6445.26
Semushkina L, Tussupbayev N, Turysbekov D, Narbekova S, Kaldybayeva Z. Flotation processing of copper-containing technogenic raw materials using a composite flotation reagent. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2023; 324(1):34-42. https://doi.org/10.31643/2023/6445.05
Choudhary S, Dhiman S, Hintersatz C, Matys S, Kutschke S, Tsushima S, Pollmann K, Saravanan V, Jain R. Selective recovery of Cu from copper mold production waste by organic ligands. Journal of Environmental Chemical Engineering. 2024; 12(5): 113398. https://doi.org/10.1016/j.jece.2024.113398
Argyn A, Zoldasbay E, Dosmukhamedov N. Improving the quality of converting products by the joint smelting of high-sulfur copper concentrate with copper-lead matte. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2024; 328(1):50-58. https://doi.org/10.31643/2024/6445.06
Chen A, Peng Z, Hwang J-Y, Ma Y, Liu X, Chen X. Recovery of Silver and Gold from Copper Anode Slimes. JOM. 2015; 2:493-502. https://doi.org/10.1007/s11837-014-1114-9
Mahmoudi A, Shakibania S, Mokmeli M, Rashchi F. Tellurium, from copper anode slime to high purity product: A review paper. Metallurgical and Materials Transactions B. 2020; 51:2555-2575. https://doi.org/10.1007/s11663-020-01974-x
Liu G, Wu Yu, Tang A, Pan D, Li B. Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: A review. Hydrometallurgy. 2020; 197:105460. https://doi.org/10.1016/j.hydromet.2020.105460
Mastyugin SA, Naboichenko SS. Processing of copper-electrolyte slimes: Evolution of technology. Russian Journal of Non-Ferrous Metals. 2012; 53:367-374. https://doi.org/10.3103/S1067821212050070
Xing WD, Lee MS. Leaching of gold and silver from anode slime with a mixture of hydrochloric acid and oxidizing agents. Geosystem Engineering. 2017; 20(4):216-223. https://doi.org/10.1080/12269328.2017.1278728
Xiao L, Wang YL, Yu Y, Fu GY, Han PW, Sun ZHI, Ye SF. An environmentally friendly process to selectively recover silver from copper anode slime. Journal of Cleaner Production. 2018.; 187:708-716. https://doi.org/10.1016/j.jclepro.2018.03.203
Ding Y, Zhang S, Liu B, Li B. Integrated process for recycling copper anode slime from electronic waste smelting. Journal of Cleaner Production. 2017; 165:48-56. https://doi.org/10.1016/j.jclepro.2017.07.094
Chizhikov DM, Shchastlivyi VP. Tellurium and Tellurides. Collet’s Publishers Ltd.: London, UK. 1970.
Hoffman JE. Recovering selenium and tellurium from copper refinery slimes. JOM. 1989; 41:33-38. https://doi.org/10.1007/BF03220269
Kenzhaliyev B K, Trebukhov S A, Volodin V N, Trebukhov A A, Tuleutay F Kh. Selenium extraction out of metallurgical production middlings. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2018; 307(4):56-64. https://doi.org/10.31643/2018/6445.30
Kenzhaliyev BK, Trebukhov SA, Nitsenko AV, Burabayeva NM, Trebukhov AA. Determination of technological parameters of selenium recovery from metallurgical production middlings in a vacuum distillation unit. International Journal of Mechanical and Production Engineering Research and Development. 2019; 9(6):87-98.
Mastyugin SA, Volkova NA, Naboichenko SS, Lastochkina MA. Shlamy elektroliticheskogo rafinirovaniya medi i nikelya [Slime from Electrolytic Refining of Copper and Nickel]. Ural Federal University: Ekaterinburg, Russia. 2013. (in Russ.).
Nitsenko A, Linnik X, Volodin V, Tuleutay F, Burabaeva N, Trebukhov S, Ruzakhunova G. Phase transformations and tellurium recovery from technical copper telluride by oxidative-distillate roasting at 0.67 kPa. Metals. 2022; 12(10):1774. https://doi.org/10.3390/met12101774
Wang S. Tellurium, its resourcefulness and recovery. JOM. 2011; 63:90-93. https://doi.org/10.1007/s11837-011-0146-7
Shibasaki T, Abe K, Takeuchi H. Recovery of tellurium from decopperizing leach solution of copper refinery slimes by a fixed bed reactor. Hydrometallurgy. 1992; 29:399-412. https://doi.org/10.1016/0304-386X(92)90024-T
Nitsenko AV, Burabaeva NM, Tuleytay FK, Seisembaev RS, Linnik XA, Azlan MN. Study of physical and chemical properties of tellurium-containing middlings. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2020; 315(4):49-56. https://doi.org/10.31643/2020/6445.36
Xu L, Xiong Y, Song Y, Zhang G, Zhang F, Yang Y, Hua Z, Tian Y, You J, Zhao Z. Recycling of copper telluride from copper anode slime processing: Toward efficient recovery of tellurium and copper. Hydrometallurgy. 2020; 196:105436. https://doi.org/10.1016/j.hydromet.2020.105436
Nitsenko AV, Linnik KA, Tuleutay FH, Burabayeva NM, Seisembayev RС. Fiziko-himicheskaya harakteristika tellursoderzhashchego promprodukta TOO Kazahmys Smelting [Physical and chemical characterization of tellurium-containing industrial product of Kazakhmys Smelting LLP]. Teoriya i tekhnologiya metallurgicheskogo proizvodstva = Theory and technology of metallurgical production. 2021; 3:10-16. (in Russ.).
Xu L, Xiong Y, Zhang G, Zhang F, Yang Y, Hua Z, Tian Y, You J, Zhao Z. An environmental-friendly process for recovery of tellurium and copper from copper telluride. Journal of Cleaner Production. 2020; 272:122723. https://doi.org/10.1016/j.jclepro.2020.122723
Weissburd SE. Fiziko-himicheskie svojstva i osobennosti stroeniya sul'fidnyh rasplavov [Physical and chemical properties and structure peculiarities of sulfide melts]. Metallurgy: Moscow, Russia. 1996. (in Russ.).
Dutchak YaI, Korenchuk NM, Korenchuk SV. Issledovanie davleniya para i termodinamicheskiy analiz splavov sistemy Cu2S–Cu2Te [Study of vapor pressure and thermodynamic analysis of alloys of the system Cu2S–Cu2Te]. Izvestiya AN SSSR. Neorganicheskie materialy = Proceedings of the Academy of Sciences of the USSR. Inorg. materials. 1975; 11(2):201-203. (in Russ.).
Nitsenko A, Volodin V, Linnik X, Burabaeva N, Tuleutay F. Behavior of copper chalcogenides during vacuum-thermal processing. Metalurgija. 2023; 62(1):125-128. https://hrcak.srce.hr/file/407986
Nitsenko AV, Volodin VN, Linnik XA, Tuleutay FKh, Burabaeva NM. Distillation recovery of tellurium from copper telluride in oxide form. Russian Journal of Non-Ferrous Metals. 2022; 63(3):284-291. https://doi.org/10.3103/S1067821222030105
Lyakishev NP. Diagrammy sostoyaniya dvojnyh metallicheskih sistem: Spravochnik v 3 tomax [State diagrams of double metal systems: Handbook in 3 volumes]. Mashinostroenie: Moscow, Russia. 1997; 2. (in Russ.).
Pashinkin AS, Fedorov VA. Phase equilibria in the Cu–Te System. Inorganic materials. 2003; 39(6):539-554. https://doi.org/10.1023/A:1024003932461
Qiu Y, Ye J, Liu Y, Yang X. Facile rapid synthesis of a nanocrystalline Cu2Te multi-phase transition material and its thermoelectric performance. RSC Advances. 2017; 36(7):22558-22566. https://doi.org/10.1039/C7RA02145C
He Y, Zhang T, Shi X, Wei S-H, Chen L. High thermoelectric performance in copper telluride. NPG Asia Materials. 2015; e210(7):1-7. https://doi.org/10.1038/am.2015.91
Yagafarova ZA, Bikkulova NN, Nigmatullina GR, Bikkulova LV. Fazovye sootnosheniya v tverdom elektrolite na osnove tellurida medi [Phase relations in the solid electrolyte based on copper telluride]. Fundamental'nye issledovaniya = Fundamental Research. 2016; 11:968-974. (in Russ.).
Gorelik SS, Dubrovina AN, Drozdova GA, Turdaliyev T. Vliyanie izmel'cheniya, pressovaniya i otzhiga na strukturu i svojstva hal'kogenidov medi [Influence of grinding, pressing and annealing on the structure and properties of copper chalcogenides]. Elektronnaya tekhnika. Seriya Materialy = Electron Technique. Materials Series. 1972; 10:73-76. (in Russ.).
Stevels ALN. Phase transitions in nickel and copper selenides and tellurides. Philips Research reports Supplements. 1969; 9:1-124.
Guastavino F, Luquet H, Bougnot J. Etude du diagramme de phase du systeme Cu – Te dans le domaine de la solution solide Cu2-xTe (0 < x < 0,16). Materials Research Bulletin. 1973; 8(8):935-942. https://doi.org/10.1016/0025-5408(73)90078-0
Vouroutzis N, Manolikas C. Phase transformations in cuprous telluride. Physica Status Solidi(a). 1989; 111(2):491-497. https://doi.org/10.1002/pssa.2211110213
Tsypin MN, Chipizhenko AA. Osobennosti struktury i svojstv nizzhego tellurida medi [Features of the structure and properties of low copper telluride]. Neorganicheskie materialy = Inorganic Materials. 1974; 10(8):1210-1214. (in Russ.).
Abrikosov NH. Dvojnye i mnogokomponentnye sistemy na osnove medi: Spravochnik [Double and multicomponent systems based on copper: Reference book]. Nauka: Moscow, USSR. 1979. (in Russ.).
Kavirajan S, Harish S, Archana J, Shimomura M, Navaneethan M. Phase transition induced thermoelectric properties of Cu2Te by melt growth process. Materials Letters. 2021; 298:129957. https://doi.org/10.1016/j.matlet.2021.129957
Huang D, Han R, Wang Y, Ye T. The Cu–Te system: Phase relations determination and thermodynamic assessment. Journal of Alloys and Compounds. 2021; 585(2):157373. https://doi.org/10.1016/j.jallcom.2020.157373
Abrikosov NH, Bankina VF, Poretskaya LV, Skudnova EV, Chizhevskaya SN. Poluprovodnikovye hal'kogenidy i splavy na ih osnove [Semiconducting chalcogenides and alloys based on them]. Nauka: Moscow, USSR. 1975. (in Russ.).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nitsenko, A., Linnik, X., Volodin, V., Tuleutay, F., & Bakhytuly, N.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.