Thermodynamics of antimony—selenium alloys formation and evaporation

Authors

  • V.N. Volodin “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University
  • S.A. Trebukhov “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University
  • A.V. Nitsenko “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University
  • X.A. Linnik “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University
  • F.Kh. Tuleutay “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University

DOI:

https://doi.org/10.31643/2024/6445.24

Keywords:

Lead, tin, alloy, vapor pressure, thermodynamics, formation, mixing, evaporation, partial and integral quantities, entropy, enthalpy

Abstract

The thermodynamic functions of alloy formation and evaporation were considered for two particular systems — Sb – Sb2Se3 and Sb2Se3 – Se in connection with the presence of congruently melting compound Sb2Se3 in the antimony—selenium system. The calculations are based on the partial vapor pressure values of the components forming the particular systems. The thermodynamic activity of antimony selenide and selenium as the most volatile components in the systems was calculated based on the saturated vapor pressure values of antimony selenide over the Sb – Sb2Se3 and selenium melts over Sb2Se3 – Se liquid alloys determined by the boiling point method (isothermal variant). Similar functions of the low volatile components in the above systems: Sb in the first system and Sb2Se3 in the latter one was calculated by numerical integration of the Gibbs—Duhem equation using the substitution proposed by Darken. The partial pressures of antimony selenide and antimony over Sb – Sb2Se3 and Sb2Se3 – Se melts were approximated by temperature—concentration relationships. The system is distinguished with a positive deviation from ideality due to the presence of a delamination region in the first system. The partial and integral entropies and enthalpies of the formation of liquid alloys were calculated based on the values of component activities found as the ratio of the partial vapor pressure of an element or compound above the solution to the saturated vapor pressure of a pure element or compound. The partial and integral functions of alloy formation are presented in the form of graphical dependences on the selenium amount in the melt. The obtained thermodynamic constants will replenish the physical and chemical data base and will be used to calculate the boundaries of the vapor— liquid equilibrium fields on the diagram of state, allowing to determine the possibility and completeness of distillation separation of molten systems.

Downloads

Download data is not yet available.

Author Biographies

V.N. Volodin, “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University

Doctor of Technical Sciences, Professor, Chief Researcher of the Laboratory of Vacuum Processes of “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University, Shevchenko str., 29/133, 050010, Almaty, Kazakhstan.

S.A. Trebukhov, “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University

Candidate of Technical Sciences, Professor, Leading Researcher of the Laboratory of Vacuum Processes Institute of “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University, Shevchenko str., 29/133, 050010, Almaty, Kazakhstan.

A.V. Nitsenko, “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University

Candidate of Technical Sciences, head of the vacuum processes laboratory of “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University, Shevchenko str., 29/133, 050010, Almaty, Kazakhstan.

X.A. Linnik, “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University

Master of Technical Sciences, Junior Researcher of the vacuum processes laboratory of “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University, Shevchenko str., 29/133, 050010, Almaty, Kazakhstan.

F.Kh. Tuleutay, “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University

Master of Technical Sciences, Junior Researcher of the vacuum processes laboratory of “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University, Shevchenko str., 29/133, 050010, Almaty, Kazakhstan.

References

KozhakhmetovSМ, KvyatkovskiySA, SultanovMK, TulegenovaZK, SemenovaAS. Processing of oxidized copper ores and sulfide copper concentrates from Aktogay deposit by pyrometallurgical methods. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2018;3(306):54-62. https://doi.org/10.31643/2018/6445.17

WangZ, GaoJ, LanX, FengG, GuoZ. A new method for continuous recovery of fine copper droplets from copper matte smelting slag via super-gravity. Resources, Conservationand Recycling.2022; 182:106316. https://doi.org/10.1016/j.resconrec.2022.106316

ChenM, AvarmaaK, TaskinenP, KlemettinenL, MichallikR, O'BrienH, JokilaaksoA. Novel fluxing strategy of copper matte smelting and trace metals in E—Waste recycling. Minerals Engineering.2023; 191:107969. https://doi.org/10.1016/j.mineng.2022.107969

Dosmukhamedov NK, ZholdasbayЕЕ.The solubility of Cu, Pb, As, Sb of copper—lead matte in the slag. Kompleksnoe Ispolzovanie Mineralnogo Syra = ComplexUse of Mineral Resources. 2020; 1(312):31-40. https://doi.org/10.31643/2020/6445.04

Dosmukhamedov NK, Zholdasbay ЕЕ, Kurmanseitov MB, Argyn AA, Zheldibay MA. Technological experiments of joint smelting of lead intermediate products, recycled materials and high—sulfur copper—zinc concentrate. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources.2020;2(313):5-13. https://doi.org/10.31643/2020/6445.11

KenzhalievBК, KvyatkovskiySA, KozhakhmetovSM, SokolovskayaLV, SemenovaAS. Depletion of waste slag from the Balkhash smelter. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources.2018;3(306):45-53. https://doi.org/10.31643/2018/6445.16

KukurugyaF, RahfeldA, MöckelR, NielsenP, HorckmansL, SpoorenJ, BroosK. Recovery of iron and lead from a secondary lead smelter matte by magnetic separation.Minerals Engineering.2018; 122:17-25. https://doi.org/10.1016/j.mineng.2018.03.030

DosmukhamedovN, ArgynA, ZholdasbayE, MoldabayevaG. Forms of oxygen presence in copper–lead matte. Journal of Materials Research and Technology. 2020; 5(9):11826-11833. https://doi.org/10.1016/j.jmrt.2020.08.029

WangcS, WangQ, GuoX, TianQ, QuS, WangZ, HuangM. Thermodynamic modeling of antimony removal from complex resources in copper smelting process.Transactions of Nonferrous Metals Society of China.2022; 12(32):4113-4128. https://doi.org/10.1016/S1003-6326(22)66082-5

Kenzhaliyev BK, Kvyatkovskiy SA, Dyussebekova MA, Semenova AS, Nurhadiyanto D. Analysis of Existing Technologies for Depletion of Dump Slags of Autogenous Melting.Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2022; 4(323):23-29. https://doi.org/10.31643/2022/6445.36

KimE, HorckmansL, SpoorenJ, BroosK, VranckenK, QuaghebeurM. Recycling of a secondary lead smelting matte by selective citrate leaching of valuable metals and simultaneous recovery of hematite as a secondary resource.Hydrometallurgy. 2017; 169:290-296. https://doi.org/10.1016/j.hydromet.2017.02.007

Andrianova TN, Aleksandrov AA, Razumeichenko LA, Okhotin VS. Viscosity and density of antimony—selenium system in liquid state.High temperature. 1970; 8(6):1192-1196.

Mehta N, Zulfequar M, Kumar A. Kinetic parameters of crystallization in glass Se100—xSbxalloys. PhysicaStatusSolidiA. 2006; 2(203):236-246. https://doi.org/10.1002/pssa.200521185

Gospodinov GG, Popovkin BA, Pashinkin AS, NovoselovaAV. Study of behavior of bismuth and antimony sulfides and antimony selenide at sublimation in vacuum. Messenger of MSU. Chemistry. 1967; 2:54—57.

Gorbov SI, KrestovnikovAN. Analysis and estimation of molecular constants of two—atomic molecules of Group V chalcogenides. News ofHigherEducationalInstitutions Non-ferrousmetallurgy. 1966; 6:26-35.

Sullivan CL, Prusaczyk JE, Carlson KD. Molecules in the Equilibrium Vaporization of Antimony Sulfide and Selenide.Journalof ChemicalPhysics. 1970; 3(53):1289-1290.

Shakhtakhtinskiy MG. Studies of elasticity of saturated vapors of some semiconductors with the use of isotope. Institute ofPhysics, Academy of Sciences of KAZ SSR. 1963; 11:52-107.

Shakhtakhtinskiy MG, Kuliev AA, Abdullaev GB. Investigation of elasticity of saturated vapors of some selenides by radioisotope method. Questions of metallurgy and physics of semiconductors. Semiconductor compounds and solid alloys. Academy of sciences of the USSR. 1961, 38-42.

Ustyugov GP, Vigdorovich EN, Kuadje BM, TimoshinI A. Saturated vapor pressure of antimony chalcogenides.News of Academy of Sciences of the USSR. Inorganicmaterials. 1969; 5(3):589-590.

Predel B, Piehl J, Pool MJ. Beitrag zur Kenntnis der thermodynamischen Eigenschaften flüssiger Thallium-Selen-,Wismut-Selen-undAntimon-Selen-Legierungen.Z. Metallkude. 1975; 7(66):388-395. https://doi.org/10.1515/ijmr-1975-660702

PredelB, Gerdes F, Gerling U. Berücksichtigung der Assoziation in der Dampfphase bei Aktivitätbestimmungen und Revision der Aktivitäten flüssiger Legierungen der Systeme Selen-Thallium, Selen-Wismut und Selen-Antimon.Z. Metallkude. 1979; 2(70):109-112. https://doi.org/10.1515/ijmr-1979-700210

TakashiM, ToshioY,KichizoN. Enthalpies of mixing in the liquid state IV. Bi +SeandSb + Se.Journal of ChemicalThermoynamics. 1972;6(4):873-878. https://doi.org/10.1016/0021-9614(72)90009-2

Gosh G, Lukas HL, Delaey L. A thermodynamic assessment of the Sb-Se system. Z. Metallkude. 1989; 10(80):663-668.[24]Kakinuma F, OhnoS, Suzuki K. Heat capacities of liquid Sb–Se and Bi–Se alloys.Journal of Non—Crystalline Solids. 1990; 1(117-118):575-578. https://doi.org/10.1016/0022-3093(90)90597-F

Gierlotka W, Lin I, Chen S, Gasior W, Debski A. Re-optimizationof the binary Sb–Se system aided by ab-initio calculation.Calphad.2021; 73:102257. https://doi.org/10.1016/j/calphad.2021.102257

Volodin VN, TuleushevYuZh. The Liquid-Vapor Phase Transition in a Copper-Calcium System. Russian Journal of Physical Chemistry A. 2020; 94(7):1300-1305. https://doi.org/10.1134/S0036024420070304

Nitsenko A, Volodin V, LinnikX, Burabaeva N, Trebukhov S.Melt-Vapor Phase Transition in the Aluminum-Selenium System in Vacuum.Metals. 2023; 13(7):1297. https://doi.org/10.3390/met13071297

State diagrams of double metallic systems: Reference book. Ed. by Lyakishev NP. M. Engineering.2000,448.

NovoselovaAV, PashinkinAS. Vapor pressure of volatile metal chalcogenides. Мoscow: Nauka. 1978,112.

Malyshev VP, Turdukozhaeva AM, Ospanov EA, Sarkenov B. Vaporizability and boiling of simple substances. Scientific World. 2010, 293-298.

Darken LS, Gurry RW. Physical chemistry of Metals. New York, Toronto, London, McGraw-Hill Book Company, INC. 1953,570.

Morachevsky AG. Thermodynamics of molten metal and salt systems. Moscow: Metallurgy. 1987,240

Downloads

Published

2023-10-23

How to Cite

Volodin, V., Trebukhov, S., Nitsenko, A., Linnik, X., & Tuleutay, F. (2023). Thermodynamics of antimony—selenium alloys formation and evaporation . Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 330(3), 13–21. https://doi.org/10.31643/2024/6445.24

Most read articles by the same author(s)

1 2 > >>