Evaporation thermodynamics and sublimation of aluminum telluride
DOI:
https://doi.org/10.31643/2022/6445.21Keywords:
aluminum telluride, vapor pressure, melting, evaporation, sublimationAbstract
The analysis of the researches completed by now showed the lack of information concerning the definition of quantity of the vapor pressure values over the molten and crystalline aluminum chalcogenide. In the work presented here, the saturated vapor pressure over liquid and crystalline aluminum sesquitelluride was determined for the first time by the boiling point method (isothermal version). The compound was synthesized from elements, with a purity of 99.99 wt. %, identified by X-ray phase analysis as a monophase Al2Te3 was used as a research object. Certain vapor pressure of liquid Al2Te3 corresponds to the dependence, vapor pressure over crystalline telluride is Based on the values of saturated vapor, the temperature dependence of the Gibbs free energy of evaporation and sublimation was determined, by differentiating which concerning temperature, the entropies of the condensed phase - vapor transformation were calculated, and then the enthalpy. Thermodynamic functions were as follows: entropy of evaporation of the liquid phase - 60.71 ± 4.08 J/(mol K), enthalpy - 98.65 ± 6.64 kJ/mol; entropy of sublimation of the crystalline phase - 69.37 ± 4.67 J/(mol K), enthalpy - 108.73 ± 7.31 kJ/ mol. The low value of entropy of the aluminum telluride transfer to the vapor phase indicates the presence of associates in the vapor and of the congruent character of evaporation and sublimation of Al2Te3 indirectly. Defined as the difference between the sublimation enthalpies and evaporation, the enthalpy of aluminum telluride melting was 10.08 ± 0.68 kJ/mol, the entropy calculated similarly was 8.66 ± 0.58 J/(mol K). The data obtained coincide with the thermodynamic values found by other authors by calorimetric methods.
Downloads
References
Isakova R.A., Nesterov V.N., Chelokhsaev L.S. Fundamentals of vacuum pyroselection of polymetallic raw materials. Alma-Ata: Nauka. 1973: 255.
Chemistry and physics of chalcogenides. Eds. Obolonchik V.A. Kiev: Naukova Dumka. 1977: 140.
Vanyukov A.V., Isakova R.A., Bystrov V.P. Thermal dissociation of metal sulfides. Alma-Ata: Nauka. 1978: 272.
Novoselova A.V., Pashinkin A.S. Vapor pressure of volatile metal chalcogenides. Moscow.: Nauka. 1978: 112.
Vaysburd S.E. Physicochemical properties and structural features of sulfide melts. Moscow: Metallurgiya. 1996: 304.
Kopylov N.I., Lata V.A., Polyvyanny I.R., Khegay L.D. State diagrams of double and triple thiosystems. Komsomolsk-on-Amur: Zhuk Industrial and Commercial Enterprise. 1999: 177.
Volodin V.N., Trebukhov S.A. Distillation processes of selenium extraction and refining. Karaganda: Tengri Ltd. 2017: 220.
Diagrams of the state of binary metal systems. Eds. Lyakisheva N.P. Moscow: Mashinostroyeniye. 1996; 1: 992.
Kapustinsky A.F., Golutvin Yu.M. Thermo-chemistry and the structure of atoms. Report 5. The heat of aluminum compounds formation with elements of Group VI of the D.I. Mendeleev Periodic System // Proceedings of the Academy of Sciences of the USSR. Chemical Sciences Department 1951; 2: 192-200.
Joël H.A., Schneider A. Die Bildungsentalpie von Aluminiumtellurid// Naturwissenschaften. 1967; (54) 22: 587.
Gattow Dr. G. Orientierende Berechnung der Bildungwärmen von Aluminium (I,II)-chalkogeniden //Angew. Chem. 1956; (68) 16: 521.
Ficalora P.J., Hastie J.W., Margrave J.L. Mass Spectrometric Studies at High Temperatures. XXVII. The Reactions of Aluminum Vapor with S2(g), Se2(g), and Te2(g) // J. Phys. Chem. 1968; (72) 5: 1660-1663.
Said H., Castanet R., Kehiaian H.V. Étude calorimétrique du systéme binaire aluminium-tellure // J. Less-Comm. Met. 1976; (46)2: 209-215.
Said H., Chastel R., Bergman C., Castanet R. Said H., Chastel R., Bergman C., Castanet R. Ther-modynamic investigation on Al – Te Alloys by dif-ferential thermal analysis and Knudsen-cell mass-spectrometry // Z. Metallkunde. 1981; (72)5: 360-365.
Ferro D., Nappi B.M., Balducci G., Placente V. A vaporization study of Al2Te3 // Thermochim. Acta. 1980; 35: 35-41.
Blot J., Rogez J., Castanet R. Étude potenti-ométrique des alliages liquids aluminium – étain et aluminium – tellure // J. Less-Comm. Met. 1986; 118: 67-82.
Kniep R., Blees P. Phasengleichgewichte und intermediäre Phasen im System Al – Te // Z. Naturforsch. 1988. (43b): 182-188.
Prabhu N., Howe J.M. The Al – Te (Alumini-um – Tellurium) System //Bull. Alloy Phase Dia-grams. 1990; (11)2: 202-206.
Oh C.-S., Lee D.N. Thermodynamic assess-ments of the In – Te and Al – Te systems // CALPHAD. 1993; (17)2: 175-187.
Volodin V.N., Khrapunov V.E., Kenzhaliyev B.K., Isakova R.A., Moldabaev M. Thermodynamic study of the silver-cadmium system with the deter-mination of the upper limit of liquid alloys existence. Proceedings of the Universities. Nonferrous-metals Industry. 2005; 3: 22-28.
Volodin V.N., Tuleushev Yu.Zh. The Liquid-Vapor Phase Transition in a Copper-Calcium System // Russian Journal of Physical Chemistry A. 2020; (94)8: 1526-1531.
Volodin V.N., Tuleushev Yu.Zh., Kenzhaliyev B.K., Trebukhov S.A. Thermal degradation of hard alloys of the niobium-cadmium system at low pressure. Kompleksnoe ispol’zovanie mineral’nogo syr’a. 2020; 1: 41-47. https://doi.org/10.31643/2020/6445.05
Volodin, V.N., Trebukhov, S.A., Kenzhaliyev, B.K., Nitsenko, A.V., Burabaeva, N.M. Melt–Vapor Phase Diagram of the Te–S System. Russian Journal of Physical Chemistry A. (92) 3: 407-410. https://doi.org/10.1134/S0036024418030330
Volodin V.N., Tuleushev Yu.Zh., Kenzhaliyev B.K., Trebukhov S.A. Thermal degradation of hard alloys of the niobium-cadmium system at low pressure. Kompleksnoe ispol’zovanie mineral’nogo syr’a. 2020; 1: 41-47. https://doi.org/10.31643/2020/6445.05
Volodin V.N., Tuleushev Yu.Zh., Nitsenko A.V., Burabaeva N.M. Concentration limits of niobi-um and existence of cadmium alloys formed by ultrafine particles. Kompleksnoe ispol’zovanie mineral’nogo syr’a. 2019; 1. P.30-36. https://doi.org/10.31643/2019/6445
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Burabaeva, N., Volodin, V., Nitsenko, A., & Tuleutai, F.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.