A difficulty to process a low quality titano-ferrite concentrates

Authors

  • F.H. Tuleutay “Institute of Metallurgy and Ore Beneficiation” JSC
  • S.A. Trebukhov “Institute of Metallurgy and Ore Beneficiation” JSC
  • A.V. Nitsenko “Institute of Metallurgy and Ore Beneficiation” JSC
  • N.M. Burabayeva “Institute of Metallurgy and Ore Beneficiation” JSC
  • K.Sh. Akhmetova “Institute of Metallurgy and Ore Beneficiation” JSC

DOI:

https://doi.org/10.31643/2018/6445.33

Keywords:

titano-ferrite concentrate, leucoxene, titanium dioxide, restoring electric smelting, sulfuric acid dissolution.

Abstract

The essential technological criteria interfering with the implementation of titano-ferrite concentrate accumulated in the amount of 4.5 thousand tones at the Obukhov deposit were determined by means of certified methods of chemical, fractional, granulometric and mineralogical composition analysis. A poor quality and unacceptable processing of the concentrate by applying the standard method of restoring electric smelting used to produce titanium slag is established to be stipulated by a high chromium trioxide (more than 8 wt.%) content, iron trioxide (over 29 wt.%); silicon dioxide (3.9 wt.%) and inconsistency with the regulated requirements for the mass fraction of titanium dioxide (about 52%). The great number of rutile insoluble in acids to 17 wt.% within the sand fraction and about 27 wt.% within the titano-ferrite fraction eliminates opportunity to involve leucoxenized high chromium concentrate into the processing by means of sulfuric dissolution method used to obtain pigmental titanium dioxide. Besides, an obstacle to process the concentrate is connected with the extreme dissemination and close assemblage of rutile and pseudomorphic varieties of leucoxenized titano-ferrite (arizonite, pseudo-brookite) with metal and nonmetal minerals that predetermine joint concentration of the bulk of titanium, iron, chromium, other accompanying elements and just a little smaller half of the total amount of silicon (44.35 wt.%) in aggregate of mineral flakes with a size of –0.063+0.044 mm. The most preferable conditions of mineral flakes disintegration were selected to ensure an increase in the granulometric composition of the concentrate to 90-95 % of –0.063+0.044 mm class in the process of short-term, for 10-15 minutes, mechanical activation, caused by the rapid destruction of large aggregates of mineral individuals. An exploratory research has shown that, despite the fineness of grinding, the significant leukoxenization of titano-ferrite causes a low, only 47-50 %, degree of dissection of the activated concentrate by the sulfuric acid dissolution method.

Downloads

Download data is not yet available.

Author Biographies

F.H. Tuleutay, “Institute of Metallurgy and Ore Beneficiation” JSC

Engineer, Institute of Metallurgy and Ore benefication. The laboratory of vacuum processes, Аlmaty, Кazakhstan.

S.A. Trebukhov, “Institute of Metallurgy and Ore Beneficiation” JSC

Candidate in technical sciences, associate professor, Leading Researcher, Institute of Metallurgy and Ore benefication, The laboratory of vacuum processes, Аlmaty, Кazakhstan.

A.V. Nitsenko, “Institute of Metallurgy and Ore Beneficiation” JSC

Candidate in technical sciences, Head of laboratory, Institute of Metallurgy and Ore benefication, The laboratory of vacuum processes, Аlmaty, Кazakhstan.

N.M. Burabayeva, “Institute of Metallurgy and Ore Beneficiation” JSC

Candidate in technical sciences, Senior Researcher, Institute of Metallurgy and Ore benefication, The laboratory of vacuum processes. Аlmaty, Кazakhstan.

K.Sh. Akhmetova, “Institute of Metallurgy and Ore Beneficiation” JSC

Candidate in technical sciences, Leading Researcher, Institute of Metallurgy and Ore benefication, The laboratory of vacuum processes, Аlmaty, Кazakhstan.

References

SaubanovM. N. Titan –material XXI veka(Titanium –material of the XXI century).Liteyshchik Rossii=Foundrymen of Russia.2011. 11, 14-18.(in Russ.).

Kotsar M. L., Lavrikov S. A., Nikonov V. I., Aleksandrov A. V., Akhtonov S. G. High-purity titanium, zirconium, and hafnium in nuclear power.Atomic Energy. 2011. 111. 2. 92-98. https://doi.org/10.1007/s10512-011-9459-4

Tyushkevich A. O., Kuzmina M. Yu. Primeneniye titana i ego splavov v pishchevoy promyshlennost i imashinostroyenii(Application of titanium and itsalloys in food industry and mechanical engineering). Perspektivy razvitiya tekhnologii pererabotki uglevodorodnykh i mineralnykh resursov: mater. VIII Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiyem(Prospects for the development of technology for processing hydrocarbon and mineral resources: mater. VIII All-Russian scientific-practical conference with international participation). Irkutsk, Russia, 2018. 73-75. (in Russ.).

Oryshchenko A. S., Gorynin I. V., Leonov V. P.,Schastlivaya I. A. Titanovye splavy dlya korpusov atomnykh reaktorov maloy i sredney moshchnosti(Titanium alloys for low and mean power nuclear reactors)// Voprosy materialovedeniya = Materials science questions. 2014.2, 199-210. (in Russ.).5Lebedev V. A. Metallurgiya titana: ucheb. posobiye(Titanium metallurgy). Ekaterinburg: IzdatelstvoUMTsUPI. 2015, 194. (inRuss.).

Singh P., Pungotra H., Kalsi N. S. On the characteristics of titanium alloys for the aircraft applications. Materials Today: Proceedings. 2017. 4. 8.8971-8982. https://doi.org/10.1016/j.matpr.2017.07.249

[Electron resource]. URL: http://metalinfo.ru/ru/news/100928.

Leontyev L. I., Dmitriyev A. N. O problem obespecheniya syr’yem proizvodstva pigmentnogo titana(About a problem of maintenance with a raw material of a pigment titanium manufacture). Kompleksnoe ispol’zovanie mineral’nogo syr’ya= Complex Use of Mineral Resources. 2015. 1.37-45. (in Russ.).

Mirovoy ryno ktitana i produktsii (prokata). Analiticheskij obzor: MetalResearch(World market of titanium and products (rolled products). Analytical review: MetalResearch). 2017. 112. (in Russ.).

[Electron resource]. URL: http://www.indexbox.ru/news/s-chem-svjazan-rost-sprosa-na-krasiteli-i-pokrytija-v-ssha.

Bajbekov M. K., Popov V. D., Cheprasov I. M. Proizvodstvo chetyrekhkhloristogo titana(Production of titanium tetrachloride) Moscow: Metallurgy. 1980, 119. (in Russ.).

AlybaevZh. A., Baimbetov B. S., Boshkaeva L. T.,Omirzakov B. A. Termodinamicheskij analiz protsessov pri plavke ilmenitovykh kontsentratov na titanovyj shlak(Thermodynamic analysis of processes during melting of ilmenite concentrates on titanium slag) Kompleksnoe ispol’zovanie mineral’nogo syr’ya= Complex Use of Mineral Resources. 2014. 2. 32-37. (in Russ.).

Khudajbergenov T. E. Titanomagnievoe proizvodstvo. Tekhnologiya pererabotki promproduktov i otkhodov(Titanium-magnesium production. Technology of processing of industrial products and wastes). Almaty: IPF S&K. 1996. 177.(in Russ.).

Lipova I. M. Priroda metamiktnykh tsirkonov(Nature of metamictural zircons). Moscow: Atomizdat. 1972. 160.(in Russ.).

Ahmad S., Rhamdhani M. A., Pownceby M. I., Bruckard W. J. Selective sulfidising roasting for the removal of chrome spinel impurities from weathered ilmenite ore. International Journal of Mineral Processing. 2016. 146.29-37. http://dx.doi.org/10.1016/j.minpro.2015.11.012

Baba A. A., Swaroopa S., Ghosh M. K., Adekola F. A.Mineralogical characterization and leaching behavior of Nigerian ilmenite ore. Transactions of Nonferrous Metals Society of China. 2013. 23. 2743-2750. https://doi.org/10.1016/S1003-6326(13)62792-2

Downloads

Published

2018-10-20

How to Cite

Tuleutay, F., Trebukhov, S., Nitsenko, A., Burabayeva, N., & Akhmetova, K. (2018). A difficulty to process a low quality titano-ferrite concentrates. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 307(4), 77–86. https://doi.org/10.31643/2018/6445.33

Most read articles by the same author(s)

1 2 > >>