Electrothermal processing of chrysotile-asbestos wastes with production of ferroalloy and extraction of magnesium into the gas phase

Authors

  • Y. Akylbekov M.Auezov South Kazakhstan University
  • V.M. Shevko M.Auezov South Kazakhstan University
  • D. Aitkulov National Center on complex processing of mineral raw materials of the Republic of Kazakhstan
  • G. Karatayeva M.Auezov South Kazakhstan University

DOI:

https://doi.org/10.31643/2023/6445.42

Keywords:

chrysotile-asbestos waste, ferroalloy, magnesium, electric smelting

Abstract

The article presents the results of an experimental study on the processing of wastes from chrysotile-asbestos production at Kostanay Minerals JSC. An electrothermal technology for the extraction of magnesium and siliceous ferroalloy from the chrysotile-asbestos wastes is proposed. The influence of the amount of coke and steel shavings on the technological parameters of the obtained alloys is determined. The results of derivatographic and SEM analyses of the chrysotile-asbestos waste samples are presented. The studies included planning experiments using the second-order rotatable designs (Box-Hunter plans), graphical optimization of technological parameters, and electric melting of a charge in a graphite crucible using a single-electrode arc furnace. Adequate regression equations were obtained explaining the effect of the amount of coke and steel shavings added to the chrysotile-asbestos waste on the extraction degree of silicon into the alloy and the silicon concentration in the alloy. By the electric melting of the charge, high-quality FS25 grade ferrosilicon with a silicon content of 24.4-29.2% and FS45 grade ferrosilicon with a silicon content of 41.6-45% were obtained. It was established that FS45 grade ferrosilicon with the extraction degree of silicon into the alloy from 75 to 85.4% is formed in the presence of 33.6-38% of coke and 16-20.8% of steel shavings. FS25 grade ferrosilicon is formed in the presence of 30-38% of coke and 29.4-40% of steel shavings; the extraction degree of silicon is 68.6-73.8%.

Downloads

Download data is not yet available.

Author Biographies

Y. Akylbekov, M.Auezov South Kazakhstan University

Doctoral student of the Department of Silicate technology and metallurgyof  M.Auezov South Kazakhstan University, Tauke Khan Avenue, 5, 160002, Shymkent, Kazakhstan.

V.M. Shevko, M.Auezov South Kazakhstan University

Doctor of technical sciences, Professor of the Department of Silicate Technology and Metallurgyof  M.Auezov South KazakhstanUniversity, Tauke Khan Avenue, 5, 160002, Shymkent, Kazakhstan.

D. Aitkulov, National Center on complex processing of mineral raw materials of the Republic of Kazakhstan

Doctor of technical sciences, professor , director of scientific research of National Center on complex processing of mineral raw materials of the Republic of Kazakhstan. Zhandosov st., 67, 050036,  Almaty, Kazakhstan.

G. Karatayeva, M.Auezov South Kazakhstan University

Candidate of technical sciences, associate professor of the Department of Silicate Technology and MetallurgyofM.Auezov South KazakhstanUniversity.Tauke Khan Avenue, 5, 160002.Shymkent, Kazakhstan.

References

Satimbekova AB, Bekaulova AA, Dikanbayeva AK, Auyeshov AP, Umirzakhov NU, Idrisheva ZhK. Pererabotka otkhodov proizvodstva khrizotil-asbestakak faktor ekologicheskoy bezopasnosti okruzhayushchey sredy [Recycling of chrysotile-asbestos production waste as a factor in environmental safety]. Vestnik vostochno-kazakhstanskogo gosudarstvennogo tekhnicheskogo universiteta im. D. Serikbayeva =Bulletin of the D. Serikbaev East Kazakhstan State Technical University, 2019; 1: 173-177.(in Russ.).

Waste utilization technology of chrysotile-asbestos production by sulfuric acid method with obtaining commercial magnesium products in the form of sulphate, oxide and metal. http://www.cmrp.kz/index.php?option=com_content&task=view&id=351&pop=1&page=0&Itemid=0&lang=en (Аccessed on 30 October 2022).

AltynbasovaKZh,KozlovskayaYeA, Ybray KB. Issledovaniyevozmozhnostiizvlecheniyanikelyaizotkhodovproizvodstvakhrizotil-asbestamestorozhdeniyaZhetygora [Study of the possibility of extracting nickel from the waste products of the chrysotile-asbestos production at the Zhetygora deposit]. Almaty: Satpaev University.2020, 45. (in Russ.).

Dzhafarov NN. Khrizotil-asbestKazakhstana [Chrysotile-asbestos of Kazakhstan]. Almaty: RIO VAK RK.2000, 180.(in Russ.).

Zhalgasuly N, Cherniy GM, Razumova OB, Ismailova AA. Tekhnologiyasozdaniyarastitel'nogopokrovanatekhnogennykhobrazovaniyakh [Technology of creation of vegetation cover on technogenic formations]. Nauchno-tekhnicheskoye obespecheniye gornogo proizvodstva: Trudy Instituta gornogo delaim. D.A. Kunayeva [Scientific and technical support of mining: Proceedings of the D. A. Kunaev Institute of Mining]. Almaty, 2014; 85:192-198. (in Russ.).

Alshanov RA. Kazakhstan na mirovom mineral'no-syr'yevom rynke: problemy i ikh resheniye : analiz i prognoz [Kazakhstan in the world mineral market: problems and their solution: analysis and forecast]. Almaty: Print-S.2005,422. (in Russ.).

Aueshov AP, Satimbekova AB, Arynov KT, Dikanbaeva AK, Bekaulova AA. Environmental and Technological Aspects of Acid Treatment of Serpentinite Waste from Chrysotile Asbestos Mining and Processing. International Journal of Engineering Research and Technology.2020; 13:12-15. https://doi.org/10.37624/IJERT/13.6.2020.1215-1219

Auyeshov A, Satimbekova A, Arynov K, Bekaulova A, Yeskibayeva S, Idrisheva Z. Environmentally friendly and resource-saving technology for disposal of dusty asbestos-containing wastes and production of magnesium salts. ARPN Journal of Engineering and Applied Sciences. 2021; 16(9):987-990.

Baigenzhenov OS, Kozlov VA, Luganov VA, Mishra B, Shayahmetova RA, Aimbetova IO. Complex processing of wastes generated in chrysotile asbestos production. Mineral Processing and Extractive Metallurgy Review.2015; 36(4):242-248. https://doi.org/10.1080/08827508.2014.955610

Pat. 2244044 RU. The method of obtaining magnesium chloride hexahydrate. Pensky A, Gladkova L, Shudinov N. Publ. 10.01.2005.

Koizhanova AK, Kenzhaliyev BK, Kamalov EM, Erdenova MB, Magomedov DR, Abdyldaev NN. Research of Gold Extraction Technology from Technogenic Raw Material. News of the National Academy of Sciences of the Republic of Kazakhstan: Series Chemistry and Technology. 2020; 439(1):95-101. https://doi.org/10.32014/2020.2518-1491.12

Biryukova AA, Tikhonova TA, Merkibayev YeS, Khabas TA, Pogrebenkov VM. Sintez kordiyeritomullitovoy keramiki s zadannym fazovym sostavom na osnove syr'ya Kazakhstana [Synthesis of cordierite-mullite ceramics with a given phase composition based on raw materials from Kazakhstan].Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2016; 2:88-94. (in Russ.).

Spasiano D, Pirozzi F. Treatments of asbestos containing wastes. Journal of Environmental Management.2017; 204:82-91. https://doi.org/10.1016/j.jenvman.2017.08.038

State standard 22524-77. Piknometry steklyannyye Tekhnicheskiye trebovaniya i usloviya postavki [Glass pycnometers Technical requirements and terms of delivery]. Moscow: Standartinform. 2011. (in Russ.).

Shevko VM, Amanov DD, Karatayeva GYe, Aytkulov DK. Kinetika polucheniya kompleksnogo ferrosplava iz kremniy–alyuminiy soderzhashchey opoki [Kinetics of obtaining a complex ferroalloy from a silicon-aluminum-containing flask] International Journal of Applied and Fundamental Research. 2016; 10(2):194-196. (in Russ.).

Akhnazarova SL, Kafarov VV. Metodyoptimizaciieksperimenta v himicheskojpromyshlennosti [Experiment Optimization Methods in the Chemical Industry]. Moscow: High school. 1985, 327. (inRuss.).

Inkov AM, Tapalov T, Umbetov UU, Hu Wen Tsen V, Akhmetova KT, Dyakova ET. Optimization methods: e-book. Shymkent: SKGU. 2003.

Ochkov VF. Mathcad 14 dlyastudentov, inzhenerov i konstruktorov [Mathcad 14 for students, engineers and designers]. St. Petersburg: BHV-Petersburg.2009, 512.(inRuss.).

Shevko VM, Karataeva GE, Tuleev MA, Badikova AD, Amanov DD, AbzhanovaAS. Complexelectrothermal processing of an oxide zinc-containing ore of the Shaymerden deposit. Physicochemical Problems of Mineral Processing. 2018; 54(3):955-964. https://doi.org/10.5277/ppmp1897

ShevkoVM, Mirkayev NK, AitkulovDK. Electrothermal production of ferroalloy from tripoli. Kompleksnoe Ispolzovanie MineralnogoSyra = Complex Use of Mineral Resources. 2023;324(1):50-56. https://doi.org/10.31643/2023/6445.07

Shevko VM, Badikova AD, Tuleev MA, Karataeva GE. Kinetics of extraction of the silicon, aluminum and calcium of the basalt from the Daubaba deposit. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2019; 2:83-89 https://doi.org/10.31643/2019/6445.20

Shevko VM, AkylbekovYY, Karataeva GY, Badikova AD. Recycling of chrysotile-Asbestos production waste. Metallurgical Research and Technology. 2022;119(4):410. https://doi.org/10.1051/metal/2022050

State standard 1415-93. Ferrosilitsiy. Tekhnicheskiyetrebovaniya i usloviyapostavki [Ferrosilicon. Technical requirements and terms of delivery]. Moscow: Standartinform. 2011, 19. (in Russ.).

Utkin NI. Proizvodstvo tsvetnykh metallov [Production of non-ferrous metals]. Moscow: Intermet Inzhiniring. 2004,442. (in Russ.).

Downloads

Published

2023-02-22

How to Cite

Akylbekov, Y., Shevko, V., Aitkulov, D., & Karatayeva, G. (2023). Electrothermal processing of chrysotile-asbestos wastes with production of ferroalloy and extraction of magnesium into the gas phase. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 327(4), 74–81. https://doi.org/10.31643/2023/6445.42