Analysis of Existing Technologies for Depletion of Dump Slags of Autogenous Melting
DOI:
https://doi.org/10.31643/2022/6445.36Keywords:
Copper slag, reduction treatment, depletion, slag siphon, two-zone Vanyukov furnace.Abstract
Pyro-metallurgy of copper production is characterized by the output of copper slag, which is regarded as a kind of solid waste. Moreover, this slag is identified as hazardous because it contains impurities, like Pb, As, and Cu. Obtaining dump slags in autogenous processes does not always meet the requirements of effective technologies, most often slags contain more than 1.0% of copper and need to be depleted. This work is presented a brief analysis of existing technologies used for copper slag depletion. The analysis of the existing technologies for the depletion of autogenous smelting dump slags showed that the most promising option seems to be the depletion of copper slags in one PV unit since by improving the process itself, by changing the unit design, it is possible to achieve technologically complete production of matte and dump slag with low copper content. There were proposed two technologies of improvement: electro-heating of slag siphon using the graphite electrodes and depletion process in two-zone PV furnace.
Downloads
References
Altushkin IA. Korol' YUA, Golov AN. Innovacii v metallurgii medi na primere realizacii proekta rekonstrukcii ZAO «Karabashmed'». CHast' I. Vybor osnovnogo plavil'nogo agregata [Innovations in copper metallurgy on the example of the implementation of the reconstruction project of CJSC Karabashmed. Part 1. Selection of the main melting unit]. Cvetnyemetally=Non-ferrous metals 2012;8:25-34.(in Russ.).
Guo Z, Pan J, Zhu D, Zhang F. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. Journal of Cleaner Production. 2018;187:910-922. http://doi.org/10.1016/j.jclepro.2018.03.264
Sarfo P, Wyss G, Ma G, Das A, Young C. Carbothermal reduction of copper smelter slag for recycling into pig iron and glass. Minerals Engineering. 2017;107:8-19. http://doi.org/10.1016/j.mineng.2017.02.006
Ryabko AG, Cemekhman LSH. Razvitie avtogennyh processov v metallurgii medi i nikelya [Development of autogenous processes in copper and nickel metallurgy]. Cvetnye metally=Non-ferrous metals 2003;7:58-63.(in Russ.).
Kozhahmetov SM, Kvyatkovskij SA, Ospanov EA, Bekenov MS, Kamirdinov GSH. Perspektivy osvoeniya besflyusovoj avtogennoj plavki smesi vysokokremnezemistyh i zhelezistyh mednyh koncentratov na Balhashskom medeplavil'nom zavode [Prospects for the development of flux-free autogenous smelting of a mixture of high-silica and ferruginous copper concentrates at the Balkhash copper smelter]. Cvetnye metally = Non-ferrous metals 2010;4:63-65. (in Russ.).
Komkov AA, Bystrov VP, Rogachev MB. Raspredelenie primesej pri plavke mednogo sul'fidnogo syr'ya v pechi Vanyukova [The distribution of impurities during the smelting of copper sulfide raw materials in the Vanyukov furnace]. Cvetnye metally = Non-ferrous metals 2006;5:17-25.(in Russ.).
DyussebekovaM, KenzhaliyevB, KvyatkovskiyS, Sit’koE, NurkhadiantoD. The main reasons for increased copper losses with slags from Vanyukov Furnace. Metalurgija. 2021;60:309-312.
Tarasov AV, Zajcev VI. Izvlechenie cennyh sostavlyayushchih iz shlakov mednogo proizvodstva [Extraction of valuable components from copper production slag]. Cvetnaya metallurgiya = Non-ferrous metallurgy 2011;7-8:60-67.(in Russ.).
Nus GS. Obednitel'naya shlakovaya elektropech' –tekhnologicheskoe dolgoletie [Electric Furnace for Slag Depletion -Technological Longevity]. Elektrometallurgiya = Electrometallurgy 2009;7:33-36.(in Russ.).
Bellemans I, De Wilde E, Moelans N, Verbeken K.Metal losses in pyrometallurgical operations –A review. Advances in Colloid and Interface Science. 2018;255:47-63. http://doi.org/10.1016/j.cis.2017.08.001
Li Y, Chen Y, Tang C, Yang S, He J, TangM. Co-treatment of waste smelting slags and gypsum wastes via reductive-sulfurizing smelting for valuable metals recovery. Journal of Hazardous Materials. 2017;322:402-412. http://doi.org/10.1016/j.jhazmat.2016.10.028.
Konig R, Degel R, OterdoomH. Highly efficient slag cleaning –latest results from pilot-scale operation. Proceedings of Copper 2013. 2013;III:185-198.
Pat. 2441081 RF. Sposob pirometallurgicheskoj pererabotki med'soderzhashchih materialov [Method for pyrometallurgical processing of copper-containing materials]. SHashmurin NI, Posohov YUM, Zagajnov VS, Stukov MI, Kosogorov SA, Mamaev MV.Publ. 27.01.2012, bull.1.(in Russ.).
Kadyrov ED. Kompleksnaya avtomatizirovannaya sistema upravleniya pirometallurgicheskim proizvodstvom medi [Integrated automated control system for copper pyrometallurgical production]. Zapiski Gornogo instituta = Notes of the Mining Institute 2011;192:120-124.(in Russ.).
Danilova NV, Kadyrov ED. Primenenie nechetkoj logiki dlya modelirovaniya processa plavki medno-nikelevogo koncentrata v pechi Vanyukova [Application of Fuzzy Logic for Modeling the Process of Smelting Copper-Nickel Concentrate in the Vanyukov Furnace]. Zapiski Gornogo instituta = Notes of the Mining Institute 2011;192:107-110.(in Russ.).
Gorai B,Jana RK, Premchand. Characteristics andutilisation of copper slag -a review. Resources conservation and recycling. 2003;39(4):299-313. https://doi.org/10.1016/S0921-3449(02)00171-4
Komkov AA, Ladygo EA, Bystrov SV. Issledovaniya povedeniya cvetnyh metallovv vosstanovitel'nyh usloviyah [Studies of the behavior of non-ferrous metals under reducing conditions]. Cvetnye metally= Non-ferrous metals 2003;6:32-37.(in Russ.).
Jalkanen H, Vehvilainen J, Poijarvi J. Copper in solidified copper smelter slags. Scandinavian Journal of Metallurgy. 2003;32:65-70. http://doi.org/10.1034/j.1600-0692.2003.00536x
Zander M, Friedrich B, Degel R, Kleinschmidt G, Hoppe M, Schmedl J. Improving copper recovery from production slags by advances stirring methods. Proceeding of EMC 2011. 2011;181-195.
Warczok A, Riveros G. Slag cleaning in crossed electric and magnetic fields. Minerals Engineering. 2007;20:34-43. http://doi.org/10.1016/j.mineng.2006.04.07
FuerstenauMC, Jameson GJ, Yoon R-H. Froth flotation: a century of innovation. Littleton: SME, 2007;897.
Alp I,Deveci H,Sungun H. Utilization of flotation wastes of copper slag as raw material in cement production. Journal of hazardous materials. 2008;159(2-3):390-395. https://doi.org/10.1016/j.jhazmat.2008.02.056
Shen H, Forssberg E. An overview of recovery of metals from slag. Waste Management. 2003;23:933-949. http://doi.org/10.1016/s0956-053x(02)00164-2
Muravyov MI,Fomchenko NV,Usoltsev AV, Vasilyev EA,Kondrat'eva TF. Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe-2(SO4). Hydrometallurgy. 2012;119:40-46. https://doi.org/10.1016/j.hydromet.2012.03.001
Koizhanova AK, Kenzhaliyev BK,Kamalov EM, Erdenova MB, MagomedovDR, Abdyldaev NN. Research of gold extraction technology from technogenic raw material. News of the National Academy of Sciences of the Republic of Kazakhstan. Series Chemistry and Technology. 2020;1(439):95-101. https://doi.org/10.32014/2020.2518-1491.12
Kenzhaliyev BK, SurkovaTYu,BerkinbayevaAN.To the question of the intensification of the processes of uranium extraction from refractory raw materials.Metalurgija. 2018;58(1-2):75-78
Kuo CY, Wu CH, Lo SL. Removal of copper from industrial sludge by traditional and microwave acid extraction. Journal of Hazardous Materials. 2005;120:249-256. http://doi.org/10.1016/j.jhazmat.2005.01.013
Banza AN, Gock E, Kongolo K. Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction. Hydrometallurgy. 2002;67(1-3):63-69. https://doi.org/10.1016/S0304-386X(02)00138-X
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kenzhaliyev, B., Kvyatkovskiy, S., Dyussebekova М., Semenova, A., & Nurhadiyanto, D.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.