Distribution of antimonium chalcogenides under conditions of vacuum thermal processing of mattes

Authors

  • V.N. Volodin “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University; The Institute of Nuclear Physics
  • S.A. Trebukhov “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University
  • A.V. Nitsenko “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University
  • N.M. Burabayeva “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University
  • X.A. Linnik “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University

DOI:

https://doi.org/10.31643/2023/6445.32

Keywords:

antimony, sulfur, selenium, tellurium, chalcogenide, vapor pressure, vacuum, matte, thermodynamics, distribution.

Abstract

It was established based on the analysis of the results of published works and the results obtained by the authors that there is no information on the behavior and distribution of antimony chalcogenides - Sb2S3, Sb2Se3, Sb2Te3, as well as double systems - Sb2S3-Sb2Se3, Sb2S3-Sb2Te3 and Sb2Se3-Sb2Te3 under the vacuum processing conditions for polymetallic mattes performed at 1100-1250 °C and a vacuum of 15 - 0.7 kPa. It was found based on the saturated vapor pressure values for monochalcogenides that the vapor pressure of free antimony sulfide will be 58.95 kPa at 1100 °C, i.e. the lower limit of the technological interval, which indicates its complete transfer to the vapor phase when the mattes are evacuated; the vapor pressure of free antimony selenide at 1100 °C exceeds the atmospheric pressure value (101.3 kPa), and Sb2Se3 would be completely extracted into the vapor phase in vacuum; the boiling point of liquid antimony telluride at atmospheric pressure corresponds to 971 °C, and it would be extracted into the vapor phase under the conditions of matte evacuation. The thermodynamic evaporation characteristics of antimony chalcogenides were found. It was concluded based on the location of the boundaries of the liquid and vapor phase coexistence fields that it is impossible to separate binary systems of antimony chalcogenides into separate compounds in the process of one evaporation cycle – condensation, in binary systems. Different effects of pressure reduction over melts were found. Lowering the pressure from atmospheric one to 0.7 kPa in Sb2S3-Sb2Se3 system did not change the position of the boundaries of the liquid and vapor fields (L + V) under the temperature; field width (L+V) decreases with decreasing pressure in Sb2S3-Sb2Te3 system; the field width first decreases with temperature, then increases in system Sb2Se3- Sb2Te3. At the same time, the position of the boiling curves of antimony chalcogenide solutions indicates the complete transfer of compounds into the vapor phase under the conditions of matte distillation processing (at 1100-1250 °C) at atmospheric pressure which is important for assessment of the distribution of antimony and rare metals - selenium and tellurium by processed products.

Downloads

Download data is not yet available.

Author Biographies

V.N. Volodin, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University; The Institute of Nuclear Physics

Doctor of Technical Sciences, Professor, Chief Researcher of the Laboratory of Vacuum Processes of the JSC "Institute of Metallurgy and Ore Beneficiation", 050010, st. Shevchenko, 29/133;  Chief Researcher, Laboratory of Ion-Plasma Technologies, Institute of Nuclear Physics,  Almaty, Kazakhstan.

S.A. Trebukhov, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University

Candidate of Technical Sciences, Professor, Leading Researcher of the Laboratory of Vacuum Processes of the JSC "Institute of Metallurgy and Ore Beneficiation", st. Shevchenko, 29/133, 050010, Almaty, Kazakhstan. 

A.V. Nitsenko, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University

Candidate of Technical Sciences, head of the vacuum processes laboratory of the JSC "Institute of Metallurgy and Ore Beneficiation", st. Shevchenko, 29/133, 050010, Almaty, Kazakhstan. 

N.M. Burabayeva, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University

Candidate of Technical Sciences, Senior Researcher of the vacuum processes laboratory of the JSC Institute of Metallurgy and Ore Beneficiation JSC, st. Shevchenko, 29/133, 050010, Almaty, Kazakhstan.  

X.A. Linnik, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University

Master of Technical Sciences, Junior Researcher of the vacuum processes laboratory of the JSC Institute of Metallurgy and Ore Beneficiation JSC, st. Shevchenko, 29/133, 050010, Almaty, Kazakhstan.

References

Volodin VN, Isakova RA. Distillyatsionnyye protsessy razdeleniya sul'fidnykh i metallicheskikh rasplavov: teoriya i tekhnologiya [Distillation processes for the separation of sulphide and metal melts: theory and technology]Karaganda. tengri ltd. 2015,260. (in Russ.).

NitsenkoA, VolodinV, LinnikX, BurabaevaN, TuleutaiF. Behaviorof Copper Chalcogenides During Vacuum-Thermal Processing. Metalurgija (Zagreb). 2023;62(1):125-128.

Volodin VN, Khrapunov VE, Isakova RA, Shendyapin AS, Trebukhov SA. Ravnovesiye zhidkost'-par v sisteme khal'kozin-antimonit pri nizkikh davleniyakh [Liquid-vapor equilibrium in the chalcocite-antimonite system at low pressures].Vestnik NAN RK = Bulletin of the National Academy of Sciences of the Republic of Kazakhstan.2010;3:45-51. (in Russ.).

Kametani H, Yamauchi C, Murao K, Hayashida M. A Fundamental study on the treatment of molten matte and white metal. Trans. JIM. 1973;14(3):218-223. https://doi.org/10.2320/matertrans1960.14.218

Dosmukhamedov NK, Zholdasbay ЕЕ. The solubility of Cu, Pb, As, Sb ofcopper-lead matte in the slag. Kompleksnoe Ispolzovаnie Minerаlnogo Syrа = Complex Use of Minerаl Resources. 2020;312(1):31-40. https://doi.org/10.31643/2020/6445.04

Dosmukhamedov NK, Argyn AA, Zholdasbay ЕЕ, Kurmanseitov MB. Converting of copper-lead matte: loss of gold and silver with slag. Kompleksnoe Ispolzovаnie Minerаlnogo Syrа = Complex Use of Minerаl Resources. 2020;314(3):5-14 https://doi.org/10.31643/2020/6445.21

Dyussebekova M, Kenzhaliyev B, Kvyatkovskiy S, Kozhakhmetov S, Semenova A, SukurovB. Studyof the effect of fluxing ability of flux ores on minimizing of copper losses with slags during copper concentrate smelting. Metals.2022;12(8):1240. https://doi.org/10.3390/met12081240

Volodin VN, TrebukhovSA, Kenzhaliyev BK, NitsenkoAV,BurabayevaNM.Melt-Vapor Phase Diagram of the Te-S System. RussianJournalof PhysicalChemistry. 2018;92(3):407-410. https://doi.org/10.1134/S0036024418030330

Kenzhaliyev BK, Trebukhov SA, Nitsenko AV,Burabayeva NM,Trebukhov AA. Determination of technological parameters of selenium recovery from metallurgical production middlings in a vacuum distillation unit. International Journal of Mechanical and Production Engineering Research and Development. 2019; 9(6):87-98. IJMPERDDEC20198

Kenzhaliev BK, Surkova TYu, Berkinbayeva AN, Dosymbayeva ZD, Chukmanova MT. To the question of recovery of uranium from raw materials. Metalurgija. 2019;58(1-2):75-78

Zhou Zh, Liu D, Xiong H, Wang Ch, Ma B, Wei L, Chen Y, Huang K. A vacuum distillation process for separation of antimony trisulfide and lead sulfide from jamsinite. Vacuum. 2021; 188(6):110172. https://doi.org/10.1016/j.vacuum.2021.110172

Dong Zh, Zhou Zh, XiongH, Yang B, Dai Y. Direct extracting lead sulfide and antimony trisulfide viaa vacuum distillation method. Separation andPurification Technology. 2021; 279:119776. https://doi.org/10.1016/j.seppur.2021.119776

Liu W, Ma B,Zhou Zh, ZuoY, Wang L, Chen Y, Wang Ch.Efficient separation of impurities in scrap copper by sulfurization-vacuum distillation. Vacuum. 2022; 202(8):111145. https://doi.org/10.1016/j.vacuum.2022.111145

Allaire A, Harris R. Vacuum distillation of copper matte remove lead, arsenic, bismuth, and antimony. Metallurgical and Materials Transactions. 1989; 20:793-804. https://doi.org/10.1007/bf02670185

Dong Zh, Li L, Xiong H, Liu G, Wang Y,Zhou Zh, Xu B Yang B. Application of modified molecular interaction volume model for phase equilibrium of PbS -Sb2S3system in vacuum distillation.Vacuum. 2022;201(7):111067 https://doi.org/10.1016/j.vacuum.2022.111067

Sokolov VV, Dolgikh VA, Pashinkin AS, Novoselova AV. Davleniye nasyshchennogo para v sisteme PbTe –PbSe [Saturated vapor pressure in the PbTe –PbSe system] Izv. AN SSSR. Inorgan. Materials = Izv. Academy of Sciences of the USSR. Inorganic materials. 1969;5(2):279-282. (in Russ.).

Mostovsky AA, Sakseev DA. O vozmozhnosti primeneniya impul'snogo vremyaproletnogo mass-spektrometra k issledovaniyu protsessov ispareniya slozhnykh veshchestv [On the possibility of using a pulsed time-of-flight mass spectrometer to study the processes of evaporation of complex substances] ZhTF = JTPh. 1964;34(7):1321-1323. (in Russ.).

Ryazantsev AA, Pashinkin AS, NovoselovaAV. Davleniye para nad zhidkim sul'fidom sur'my [Vapor pressure over liquid antimony sulfide] Vestn. MGU. Khimiya = Vestn. Moscow State University. Chemistry. 1968;5:95-96. (in Russ.).

Ustyugov GP, Vigdorovich EN,Kudryavtsev AA, Kuadzhe BM. Davleniye para khal'kogenidov elementov pyatoy gruppy [Vapor pressure of chalcogenides of elements of the fifth group] Elektronnaya tekhnika. Ser. Materialy = Electronic engineering. Ser. Materials. 1968;1:62-65. (in Russ.).

Ustyugov GP, Vigdorovich EN, Kuadzhe BM, Timoshin IA. Davleniye nasyshchennogo para khal'kogenidov sur'my [Saturated vapor pressure of antimony chalcogenides]. Izv. AN SSSR. Inorgan. Materials = Izv. Academy of Sciences of the USSR. Inorganic materials. 1969; 5(3):589-590. (in Russ.).

Sullivan CL, Prusaczyk LE. Carlson KD. Molecules in the equilibrium vaporisatin of antimony sulphide andselenide. J. Chem. Phys. 1970;53:1289-1290.

Faure FM, Mitchell ML, Bartlett RW. Vapor pressures study of stibnite (Sb2S3). High. Temp. Sci. 1972;4:181-191.

Nesterov VN, Isakova RA. Davleniye para sul'fida sur'my [Vapor pressure of antimony sulfide]. IMiO AN Kaz SSR. Alma-Ata. Dep. v VINITI = IMOB AS Kaz SSR. Almaty. Dep. V ARISTI. 1974; 770:74. (in Russ.).

Shendyapin AS, Nesterov VN, Ibragimov ET.Davleniye paratrekhsernistoy sur'my [Vapor pressure of trisulfuric antimony]. IMiO AN Kaz SSR. Alma-Ata.1974. Dep. v VINITI = IMOB AS Kaz SSR. Almaty. Dep. V ARISTI. 1975; 1037-75. (in Russ.).

Melekh VT, Semenkovich SA, Andreev AA. Termodinamika poluprovodnikovykh khal'kogenidov elementov IV i V grupp [Thermodynamics of semiconductor chalcogenides of elements of IV and V groups]. Termodinamika i poluprovodnikovoye materialovedeniye = Thermodynamics and semiconductor materials science. Moscow. 1983, 162-164. (in Russ.).

Placente V, Scardala P, Ferro D. Study of the vaporization behavior of Sb2S3and Sb2Te3from their vapor pressure measurements. J. Alloys and Compounds. 1992;179(1-2):101-115. https://doi.org/10.1016/0925-8388(92)90251-4

Vanyukov AV, Isakova RA, Bystrov VP. Termicheskaya dissotsiatsiya sul'fidov metallov [Thermal dissociation of metal sulfides]. Alma-ata: Nauka = Almaty: Science. 1978, 272. (in Russ.).

Isakova RA. Davleniye para i dissotsiatsiya sul'fidov metallov [Vapor pressure and dissociation of metal sulfides].Alma-ata: Nauka = Almaty: Science. 1968,230. (in Russ.).

Novoselova AV, Pashinkin AS. Davleniye para letuchikh khal'kogenidov metallov [Vapor pressure of volatile metalchalcogenides].Moskva:Nauka = Moscow: Science. 1978, 112. (in Russ.).

Ibragimov ET. Vakuumtermicheskiy sposob pererabotki sur'musoderzhashchikh polimetallicheskikh shteynov [Vacuum thermal method of processing antimony-containing polymetallic mattes] Cand. ... cand. tech. Sciences: 05.16.03. Alma-ata: IMiO AN Kaz SSR = Almaty: IMOB ASKaz SSR. 1975, 165. (in Russ.).

Andrianova TN, Alexandrov AA, Razumeichenko LA, Okhtin VS.Issledovaniye vyazkosti i plotnosti sistemy sur'ma –selen v zhidkom sostoyanii [Investigation of the viscosity and density of the system antimony -selenium in a liquid state].Teplofizika vysokikh temperature = Thermophysics of high temperatures. 1970;8(6):1192-1196. (in Russ.).

Mehta N, Zulfequar M, Kumar A. Kinetic parameters of crystallization in glass Se100-xSbxalloys. Phys. status solid. A. 2006;203(2):236-246. https://doi.org/10.1002/pssa.200521185

Gospodinov GG, Popovkin BA, Pashinkin AS, Novoselova AV. Izucheniye povedeniya sul'fidov vismuta i sur'my i selenida sur'my pri vozgonke v vakuume [Study of the behavior of bismuth and antimony sulfides and antimony selenide during vacuum sublimation] Vestn. MGU. Ser. Khimiya = BulletinMoscow State University. Ser. chemistry. 1967; 2:54-57.(in Russ.).

Gorbov SI, Krestovnikov AN. Analiz i otsenka molekulyarnykh postoyannykh dvukhatomnykh molekul khal'kogenidov V gruppy [Analysis and evaluation of molecular constants of diatomic molecules of group V chalcogenides] Izv. VUZov. Tsvetnaya metallurgiya = Newsuniversities. Non-ferrous metallurgy. 1966;6:26-35.(in Russ.).

Shakhtakhtinsky MG. Issledovaniya uprugosti nasyshchennykh parov nekotorykh poluprovodnikov s primeneniyem izotopa[Studies of the elasticity of saturated vapors of some semiconductors using an isotope] Tr. In-ta fiziki AN Az SSR= Works Institute of Physics of the Academy of Sciences of the Az SSR. 1963; 11:52-107.(in Russ.).

Shakhtakhtinsky MG, Kuliev AA, Abdullaev GB. Issledovaniye uprugosti nasyshchennykh parov nekotorykh selenidov metodom radioizotopov [Investigation of the saturated vapor pressure of some selenides by the method of radioisotopes] Voprosy metallurgii i fiziki poluprovodnikov. Poluprovodnikovyye soyedineniya i tverdyye splavy= Problems of metallurgy and semiconductor physics. Semi-conductor compounds and hard alloys. Moskva: Izd. AN SSSR = Moscow: Ed. Academy of Sciences of the USSR. 1961, 38-42.(in Russ.).

Predel B, Piehl J, Pool MJ. Beitrag zur Kenntnis der thermodynamischen Eigenschaften flüssiger Thallium-Selen-, Wismut-Selen-und Antimon-Selen-Legierungen. Z. Metallkude. 1975;66(7):388-395.

Predel B, Gerdes F, Gerling U. Berücksichtigung der Assoziation in der Dampfphase bei Aktivitätbes-timmungen und Revision der Aktivitäten flüssiger Legierungen der Systeme Selen-Thallium, Selen-Wismut und Selen-Antimon. Z. Metallkude. 1979;70(2):109-112.

Porter RF, Spencer CW. Stabilities of the Gaseous Molecules BiSe, BiTe and SbTe. J. Chem. Phys. 1960;32(3):943-944.

Gerasimov YaI, Nikolskaya AV. Termodinamicheskiye svoystva telluridov vismuta (Bi2Te3) i sur'my (Sb2Te3) [Thermodynamic properties of bismuth (Bi2Te3) and antimony (Sb2Te3) tellurides] Voprosy metallurgii i fiziki poluprovodnikov = Problems ofmetallurgy and semiconductor physics. Moskva: Izd. AN SSSR =Moscow: Ed. Academy of Sciences of the USSR. 1961, 30-33.(in Russ.).

Boncheva-Mladenova Z, Pashinkin AS, Novoselova AV. O povedenii telluridov sur'my i vismuta i selenida vismuta pri vozgonke v vakuume [On the behavior of antimony and bismuth tellurides and bismuth selenide during sublimation in vacuum] Vestn. MGU. Ser. Khimiya = Bull. Moscow State University. Ser. Chemistry. 1969;6:57-59.(in Russ.).

Voronin GF, Degtyarev SA. Raschet termodinamicheskikh svoystv splavov po kalorimetricheskim dannym i diagrammam fazovykh sostoyaniy. III. Splavy sur'my s tellurom [Calculation of thermodynamic properties of alloys from calorimetric data and phase diagrams. III. Alloys of antimony with tellurium] Zhurn. fiz. khimii = Jour. physical chemistry. 1981;55(7):1685-1691.(in Russ.).

Gautam G, Leo LH, Luc D. A thermodynamic assessment of the Sb –Te system. Z. Metallkunde. 1989;80(10):731-736.

Abrikosov NKh, Bankina VF, Poretskaya LV, Skudnova EV, ShelimovaLE. Poluprovodnikovyye soyedineniya, ikh polucheniye i svoystva [Semiconductor compounds, their preparation and properties]. Moskva:Nauka = Moscow: Science. 1967, 173.(in Russ.).

Downloads

Published

2023-01-26

How to Cite

Volodin, V., Trebukhov, S., Nitsenko, A., Burabayeva, N., & Linnik, X. (2023). Distribution of antimonium chalcogenides under conditions of vacuum thermal processing of mattes. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 326(3), 88–95. https://doi.org/10.31643/2023/6445.32