The effect of carbon nanotubes on the curing process and the strength of epoxy resin
DOI:
https://doi.org/10.31643/2018/6445.36Keywords:
epoxide resin, carbon nanotubes, modification, geltime, strengthening.Abstract
The influence of carbon nanotubes of “Taunit-M” of various modifications (carboxylated, carboxyl-hydroxylated, amidated) on the viscosity of the liquid state, gelation, and the strength of the cured epoxy resin “Inject-T” was investigated. For the first time it was found that the introduction of carbon nanotube in epoxy resin at 25 °C increases the viscosity by 4-55 %, at 50 °C it increases by 5-52 %, at 70 °C – by 6 %. The most discernable effect on the viscosity of epoxy resin is obtained for amidated carbon nanotubes. Gel time at 150 °C epoxy resin was 6.3 minutes, with the introduction of carbon nanotube increased to 11.3-13 minutes. Increasing pot life is very important for the technology of using epoxy resin. The first 3 minutes of gelation of the epoxy resin were studied, while the energy loss modulus of the epoxy resin gel without carbon nanotubes monotonically increases over time from 0 to 0.05 MPa, with the introduction of carbon nanotube into the epoxy resin, the loss modulus increases within the first 1-2 minutes from the start of the gel time to the values of 0.14-0.38 MPa (depending on the modification of carbon nanotube), then falls sharply. This means that after the gel time the carbon nanotubes substantially accelerate the process of solidification of the epoxy resin. The strength of the cured epoxy resin was 172 MPa, the introduction of carbon nanotubes increased the strength to 210 MPa. Thus, the introduction of carbon nanotube in epoxy resin slightly increases its viscosity in the liquid state, substantially prolongs the gelation time, accelerates hardening from the moment of gelling, increases the strength of the cured epoxy resin.
Downloads
References
Ismailov M.B., Yermakhanova A.M. Carbon nanoparticles influence on mechanical properties of epoxide resin and carbon composite. Review Complex use of mineral resources. Almaty. 2016. 4. 63–73. (in Eng).
Bogatov V.A., Kondrashov S.V., Mansurova I.A., Minakov V.Т., Anoshkin I.V. O mekhanizme usileniya epoksidnyh smol uglerodnymi nanotrubkami ( About the mechanism of strengthening epoxy resins with carbon nanotubes). VIAM/2011-205915 –Vse materialy. Enciklopedicheskii slovar’= All materials. Encyclopedic Dictionary. 2012. 4. (in Russ.).
Ponomarev A.N., Nizina T.A., Kislyakov P.A., KozeevA.A. Rezul’taty issledovaniya epoksidnyh kompozicii, modificirovannyh rastvorimymi adduktami nanolkasterov ugleroda.(The results of the study of epoxy compositions modified with carbon nanoclusters adducts). [Electron.resource]. –URL:http://www. rusnor.org/nanoworld/pro/6637.htm (in Russ.).
D’yachkova T.P. Fiziko-himicheskie osnovy funkcionalizatsii i modifitsirovaniya uglerodnyh nanomaterialov: Dis. ...doktora tekhn.nauk: 02.00.04(Physico-chemical foundations of functionalization and modifying carbon nanomaterials:Thesis for Cand. of Tech.Science). Natsionalnyiy issledovatelskij universitet «Moskovskij institut elektronnoj tekhniki=National Research University "Moscow Institute of Electronic Technology. Tambov. 2016. 412. (in Russ.).
Nikulin S.M., Tashkinov A.A., Shavshukov V.E., Rozhkov V.E., Chesnokov V.V, Paukshtis E.A. Razrabotka metoda vvedeniya mnogosloinykh uglerodnykh nanotrubok v epoksidnye polimery dlya povysheniya prochnosti materiala (Development of a method for introducing multilayer carbon nanotubes into epoxy polymers to increase the strength of a material).
Материаловедение113Kompozity i nanostruktury=Composites and nanostructures. Moscow. 2014. 7.1. 34-40. (in Russ.).
TemirgalievaT.S., Nazhipkyzy M., Nurgain A, Rahmetullina A, Dinistanova B., Mansurov Z.A. Sintez mnogostennyh uglerodnyh nanotrubok metodom CVD i ikh funktsionalizatsyja(Synthesis of multiwalled carbon nanotubes by CVD and their functionalization). Novosti natsionalnoy akademii nauki Respubliki Kazahstan=News of the National Academy of Sciences of the Republic of Kazakhstan. Almaty. 2017. 2. 422. 44-50 (in Russ.).
D’yachkova T.P., Druzhinina V.N. Gazofaznoe amidirovanie uglerodnyh nanotrubok(Gas-phase amidation ofcarbon nanotubes). Nauchnyiy obzor. Tehnicheskie nauki = Scientificreview. Technicalscience.Tambov. 2015. 1. 172-182. (in Russ.).
Kuznetcova L.M., Potapov L.I., Yagund E.M., Yakhin R.G. Izuchenie vliyaniya uglerodnykh nanotrubok na konversiyu epoksidnykh grupp v epoksiaminnykh kompozitciyakh( Study of the effect of carbon nanotubes on the conversion of epoxy groups in epoxyamine compositions). Izvestiya KGASU= The journal of the kazan state architectural-building university. 2015. 4. 273-279. (in Russ.).
Epoxy chemistry [Electron.resource]. –URL: http://epoxy-it.com/ss/epoxy-chemistry/(accessed date 15.03.2018). (in Russ.).
Dynamic mechanical analysis [Electron.resource]. –URL: https://www.netzsch-thermal-analysis.com/ru/produkty-reshenija/dinamicheskii-mekhanicheskii-termicheskii-analiz/dma-242-e-artemis/(accessed date 15.03.2018). (in Eng).
Sopotov R.I. Svyazueshee dlya kompozitcionnykh materialov na osnove epoksidnogo oligomera, modifitsirovannogo smesyami termoplastov(Binder for composites based on an epoxy oligomer modified with thermoplastics): Diss.kand.tehn.nauk. Rosisskii himiko-tehnologicheskii universitet im.D.I.Mendeleeva(Dmitry Mendeleev University of Chemical Technology of Russia) Thesis for Cand. of Tech.Science Moscow. 2016. 177 (in Russ.).
Nelyub V.A., GrashenkovD.V., Kogan D.I., Sokolov I.A. Primenenie pryamyh metodov formovaniya pri proizvodstve krupnogabaritnyh detalei iz stekloplastikov(The application of direct molding methods for the production of large-sized parts made of fiberglass). Khimicheskaya tehnologiya =Chemical Technology. 2012.13.12.17-23. (in Russ.).
ТУ 2257-Инжект-18826195-12. [Electron.resource]. –URL: URL:http://www.epital.ru/infu/t.html (accessed date 15.06.2018). (in Russ.).
D’yachkova T.P., TkachevA.G. Metody funktsionalizatsii i modifitsirovaniya uglerodnykh nanotrubok (Methods of modifying and functionalization of carbon nanotube). Moscow: Spektr = Spektr. 2013. 152. (in Russ.).
GOST-25271-93 [Electron.resource]. –URL: http://docs.cntd.ru/document/gost-25271-93 (accessed date 15.03.2018). (in Russ.).
Adhesive application guide. [Electron.resource]. –URL: http://www.epotek.com/ site/files/brochures/pdfs/adhesive_application_guide.pdf/(accessed date 15.03.2018). (in Eng.).
Journal of Annamaria Visco, Luigi Calabrese Milone. Cure Rate and Mechanical Properties of a DGEBF Epoxy Resin Modified with Carbon Nanotube. reinforced plastics and composites. 2009. 28.08. 937-949. (in Eng.).
Ewelina Ciecierska, Anna Boczkowska, Krzysztof Jan Kurzydlowski, Iosif Daniel Rosca, Suong Van Hoa. The effect of carbon nanotubes on epoxy matrix nanocomposites. Journal of thermal analysis and calorimetry. 2013. 111. 2. 1019-1024. https://doi.org/10.1007/s10973-012-2506-0
Tkachev A.G., Haritonov A.P., Simbirtseva G.V.,Haritonova L.N., Blohin A.N., Dyachkova T.P., Druzhinina V.N., Maksimkin A.V., Chukov D.I., Cherdyintsev V.V. Strengthening of epoxy materials by fluorinated carbon nanotubes. Sovremennyie problemyi nauki i obrazovaniya=PenzaModern problems of science and education2014. 2. 72-78. (in Russ.).
Stepanischev N.A., Tarasov V.A. Uprochnenie polieрfirnoj matritsy uglerodnymi nanotrubkami. (Strengthening the polyester matrix with carbon nanotubes). Vestnik MGTU imeni N.E. Baumana. Seriya Priborostroenie. = Bulletin of MSTU named after N.E. Bauman. Series of instrumentation.Moscow. 2010. 53-65. (in Russ.).
Nikolaeva A.V. Poluchenie i issledovanie vodnykh suspenzij grafenovykh chastits v prisutstvii poverkhnostno-aktivnykh veschestv(Preparation and investigation of aqueous suspensions of graphene particles in the presence of surfactants: Thesis for Cand. of Tech.Science): Dis. ...kand.tekhn.nauk:05.07.11./ Nauchno-issledovatelskiy institut «NIIgrafit»=Scientific research institute of construction materials based on graphite “SRIgraphite”.Moscow. 2015. 140. (in Russ.).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Ermakhanova, А., & Ismailov, M.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.