Aluminum-lithium alloys: types, properties, application, and production technologies. Overview

Authors

  • I.K. Ablakatov National Center for Space Research and Technology JSC
  • B.M. Baiserikov National Center for Space Research and Technology JSC
  • M.B. Ismailov National Center for Space Research and Technology JSC
  • M.R. Nurgozhin National Center for Space Research and Technology JSC

DOI:

https://doi.org/10.31643/2022/6445.34

Keywords:

alloy, aluminum, lithium, magnesium, zirconium, strength, technology.

Abstract

The article provides a brief overview of the aluminum industry development in Kazakhstan and the possibility of obtaining high-strength structural aluminum-lithium alloys.  The country's enterprises produce aluminum of technical purity and aluminum alloys of low and medium strength of 6060, 6063, 6463, 6082, AK5M2, ADS-12, AD-31, AD-35, which are available materials for the construction industry.  In Kazakhstan, there is progressive development of mechanical engineering which requires stronger alloys of 300-400 MPa, and for special engineering (defense, aerospace, and other advanced industries) - strengths above 415 MPa. High-strength structural aluminum alloys are based on Al-Cu-Mg, Al-Zn-Mg-Cu, Al-Li systems.  Among these systems, relatively new Al-Li alloys are of great interest, having a great potential for further improvement of characteristics. The Al-Li system alloys with record-high specific strengths, corrosion-resistant, and good welded joints are widely used in the aerospace industry, where they are used for the production of power elements and housings.   The article provides an overview of the known aluminum-lithium alloys, as well as the main technological stages of their production.

Downloads

Download data is not yet available.

Author Biographies

I.K. Ablakatov, National Center for Space Research and Technology JSC

Junior Researcher, National Center for Space Research and Technology JSC, Almaty, Kazakhstan. 

B.M. Baiserikov, National Center for Space Research and Technology JSC

Junior Researcher, National Center for Space Research and Technology JSC, Almaty, Kazakhstan. 

M.B. Ismailov, National Center for Space Research and Technology JSC

Doctor of Engineering, Professor, Director of the Space Materials Science and Instrumentation Department under National Center for Space Research and Technology JSC, Almaty, Kazakhstan.

M.R. Nurgozhin, National Center for Space Research and Technology JSC

Doctor of Engineering, Professor, Academician of the International Academy of Informatization and the Engineering Academy of the Republic of Kazakhstan. Chairman of the Management Board of National Center for Space Research and Technology JSC, Almaty, Kazakhstan.

References

Aliyeva SG, Altman MB, Ambartsumyan SM. Promyshlennyye alyuminiyevyye splavy[Industrial Aluminum Alloys]. Moscow. Metallurgy. 1984;528. (in Russ.).

Mysik RK, Loginov YuN, Sulitsin AV, Brusnitsyn SV. Proizvodstvo litykh zagotovok iz deformiruyemykh alyuminiyevykh i mednykh splavov [Production of cast blanks from deformable aluminum and copper alloys]. Yekaterinburg: URFU.2011;414. (in Russ.).

Shemetev GF. Alyuminiyevyye splavy: sostavy, svoystva, primeneniye [Aluminum alloys: compositions, features, application]. St. Petersburg. 2012;155. (in Russ.).

Nazarov ShA, Ganiyev IN, Ganiyeva IN, Mikrostruktura i mekhanicheskiye svoystva splava Al+6%Li s redkozemelnymi metallam [Microstructure and mechanical properties of Al+6%Li alloy with rare earth metals]. Bulletin of the Moscow State Technical University named after G.I. Nosov. 2017;15(2):63-68.(in Russ.).

Antipov VV. Metallicheskiye materialy novogo pokoleniya dlya planera perspektivnykh izdeliy aviatsionno-kosmicheskoy tekhniki [Metal materials of a new generation for the airframe of promising products of aerospace technology]. Materials Science news: Science and technology. 2013;4. (in Russ.).

Antipov V.V. Strategiya razvitiya titanovykh, magniyevykh,berilliyevykh i alyuminiyevykh splavov [Development strategy of titanium, magnesium, beryllium and aluminum alloys]. Aviation materials and technologies. 2012;5:157-167. (in Russ.).

Ryazantsev VI, Matsnev VN. Osobennosti izgotovleniya svarnykh agregatov letatelnykh apparatov iz alyuminiyevykh splavov sistem Al-Mg-Li i Al-Cu-Li [Features of manufacturing welded aircraft assemblies from aluminum alloys of Al-Mg-Li and Al-Cu-Li systems]. Structural Materials. 2005;29-39.(in Russ.).

Roberto J, John L. The evolution of Al-Li base products for aerospace and space applications. Metallurgical and materials transactions A. 2012;43A:3325-3337. https://doi.org/10.1007/s11661-012-1155-z

Akhtar N, Akhtar W, Wu S. Melting and casting of lithium containing aluminium alloys. International Journal of cast metals research. 2015;28(1):1-8. https://doi.org/10.1179/1743133614Y.0000000134

Wanhill RK. Aerospace applications of aluminium-lithium alloys. Draft chapter. 2014;15:214-375.https://doi.org/10.1016/B978-0-12-401698-9.00015-X

Yongxiao W, Guogun Zh. Hot extrusion processing of Al-Li alloy profiles andrelated issues. Chinese journal of mechanical engineering. 2020;33(1):1-24. https://doi.org/10.1186/s10033-020-00479-7

Ali Abd E, Yong X, XunzhongG. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys. Journal of advanced research. 2018;10:49-67.https://doi.org/10.1016/j.jare.2017.12.004

Gureyeva MA, Grushko OE, Ovchinnikov VV. Svarivayemyye alyuminiyevyye splavy v konstruktsiyakh transportnykh sredstv [Welded aluminum alloys in vehicle structures]. VIAM. 2008.30. (in Russ.).

Seth S. Improvements of mechanical properties in aluminum-lithium alloys. Ruth and ted braun awards for writing excellence. 31-46.

Fridlyander IN. Sovremennyye alyuminiyevyye,magniyevyye splavy i kompozionnyye materialy na ikh osnove [Modern aluminum, magnesium alloys and composite materials based on them]. VIAM. 2002;19. (in Russ.).

Fridlyander IN. Alyuminiyevyye splavy s litiyem i magniyem[Aluminum alloys with lithium and magnesium]. In the book: creation, research and application of aluminum alloys: Selected works for the 100th anniversary of his birth. 2013;133-138. (in Russ.).

Fridlyander IN. Vospominaniya o sozdanii aviakosmicheskoj i atomnoj tekhniki iz alyuminievyh splavov [Memories of the creation of aerospace and nuclear technology from aluminum alloys]. Moscow: science. 2005;275. (in Russ.).

Bird R, Dicus D, Fridlyander JN. Al-Li alloy 1441 for fuselage applications. NASA. USA. BIAM. Moscow. 2000;331-337.https://doi.org/10.4028/www.scientific.net/MSF.331-337.907

Haoxiang G, Tianxin W, Jun L. Hot stamping of an Al-Li alloy. Manufacturing Rev. 2016;3:1-5.https://doi.org/10.1051/mfreview/2016006

Fencheng L, Xiaoguang W, Baosheng Zh. Corrosion resistance of 2060 aluminum-lithium alloy LBW welds filled with Al-5.6Cu wire. Materials.2018;11:1-12.https://doi.org/10.3390/ma11101988

Missori S. Sili A. Mechanical and microstructural properties of 8090 Al-Li alloy welded joints. Metallurgical Science and technology.2022(2):22-26

Djukanovic Goran.Aluminium-Lithium Alloys Fight Back. https://aluminiuminsider.com/aluminium-lithium-alloys-fight-back/. 2017.(accessed 02 February 2022)

Alcoa Wins Fourth Boeing Contract in String of Recent Deals. https://www.businesswire.com /news/home/20160128005251/en/Alcoa-Wins-Fourth-Boeing-Contract-in-String-of-Recent-Deals.2016 (accessed 08February 2022)

Alcoa Announces Jet Engine First in $1.1 Billion Supply Agreement with Pratt & Whitney.https://www.businesswire.com/news/home/20140714005425/en/Alcoa-Announces-Jet-Engine-First-in-1.1-Billion-Supply-Agreement -with-Pratt-Whitney,2014 (accessed 08February 2022).

Prasad NE, Gokhale AA, Wanhill R. Aluminum-Lithium Alloys. Processing, Properties, and Applications. Elsevier Inc. 2014;608.https://doi.org/10.1016/C2012-0-00394-8

Gerben Sinnema, Michael Windisch. Damage Tolerance Characterizationof AA2195 and its FSW Joints.Conference: Aeromat 22 Conference and Exposition American Society for Metals.https://www.researchgate.net/publication/267900727_Damage_Tolerance_Characterization_of_AA2195_and_its_FSW_Joints2011 (accessed 02 February 2022).

CastroP, TavaresS. Damagetolerance of aircraft panels.Mechanica Experimental. 2010;18:35-46.

The evolution of constellium Al-Li aloys for space launch and crew module applications.https://www.lightmetalage.com/news /industry-news/aerospace/article-the-evolution -of-constellium-al-li-alloys-for-space-launch-and-crew-module-applications/2019 (accessed08February 2022).

Alcan Aluminium Low Density Alloys Selected as a Critical Material for the Orion Crew Exploration Vehicle. https://www.prnews wire.com/news-releases/alcan-aluminium-low-density-alloys-selected-as-a-critical-material-for-the-orion-crew-exploration-vehicle-81207962.html2010 (accessed08February 2022).

Amerikanskij kosmicheskij korabl' Orion vyshel na okolozemnuyu orbitu[The American Orion spacecraft has entered near-Earth orbit]. (Electron resource) 2014. URL: https://lenta.ru/news/2014/12/05/orion2/(accessed 08 February 2022).

Alcan alloys selected for the next-gen spacecraft. https://www.design-engineering.com /alcan-alloys-selected-for-the-next-gen-spacecraft-10564/2010 (accessed 08 February 2022).

Niedzinski M, Thompson C. Airware 2198 backbone of the Falcon family of SpaceX launchers. Light Metal Age. 2010;68:6-55

Super Lightweight external tank. https://www.nasa.gov/sites/default/files/113020main_shuttle_lightweight.pdf2005 (accessed 08 February 2022).

Vorel М, Svend, Hinsch. AlMgSc alloy 5028 status of maturation.7thEuropean conference for aeronautics and space sciences. 2017;1-9. https://doi.org/10.13009/Eucass2017-633

Missile Technology Control Regime. https://mtcr.info/public-documents/2020 (accessed 08 February 2022).

Rukovodstvo k prilozheniyu po rezhimu kontrolya za raketnymi tekhnologiyami [Guide to the annex on the Missile technology control regime].2020. URL: http://www.mtcr.info/english/MTCR_Annex_HandbookRUS.pdf. (accessed 08 February 2022).

Wassenaar Arrangement on Export Controls for Conventional Arms and Duel-Use Coltrols and Technologies. http://www.wassenaar .org. 2012 (accessed 08 February 2022).

Nuclear Suppoliers Group (NSG).http:// www.nuclearsuppliersgroup.oeg/. 2015 (accessed 08 February 2022).

Jones W, Das P. The mechanical properties of aluminum-lithium alloys.J. Inst. Met. 1959-1960;88:435-438.

Kaiser MS, Shorowordi KM. Effect of rolling on the fractional recrystallization behaviors of Al-Mg and Al-Mg-Zr alloys. Journal of mechanical engineering. 2018;48:24-29.https://doi.org/10.3329/jme.v48i1.41091

Samiul K, Kaiser MS. Investigation of Mg and Zr addition on the mechanical properties of commercially pure Al. Internationals Scholarly and scientific research and innovation. 2019;9:607-611. https://doi.org/10.5281/zenodo.3461988

Saheb N., Hakeem AS, Khalil A. Synthesis and spark plasma sintering of Al-Mg-Zr alloys. J. Cent. South Univ. 2013;20:7-14. https://doi.org/10.1007/s11771-013-1452-8

Yu P, Antao Ch, Liang Zh. Effect of solution treatment on microstructure and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy. J.Mater. Res. 2016;31:1124-1132.https://doi.org/10.1557/jmr.2016.103

Mikhaylovskaya AV, Mochugovskiy AG. Precipitation behavior of Li3Al3Zr phase in Al-Mg-Zr alloy. MaterialsCharacterisation. 2018;139:30-37. http://dx.doi.org/10.1016/j.matchar.2018.02.030

MysikRK, LoginovYuN, SulicinAV, BrusnicynSV. Proizvodstvo lityh zagotovok iz deformiruemyh alyuminievyh i mednyh splavov [Production of cast blanks from deformable aluminum and copper alloys]. Ural Federal University.2011;414.(in Russ.).

Koryagin YuD, Smirnov MA, Chernov SS, Kareva NT. Struktura i svojstva alyuminij-magnij-litievyh splavov, podvergnutyh termomekhanicheskoj obrabotke [Structure and properties of aluminum-magnesium-lithium alloys subjected to thermomechanical treatment]. Moscow: Metallurgy.2010;58-61. (in Russ.).

Fedoseeva EM, Ol'shanskaya TV, Prohorov PV. Metallograficheskie issledovaniya svarnyh shvov alyuminievogo splava sistemy Al–Mg–Li, podvergnutogo termovakuumnoj obrabotke [Metallographic studies of welds of aluminum alloy of the Al–Mg–Li system subjected to thermal vacuum treatment]. Bulletin of the Perm National Research Polytechnic University. Mechanical engineering, materials science. 2020;22(1):40-53. (in Russ.).

Jun Y, Ming G, Geng L, Chen Zh, Xiaoyan Z, Ming J. Microstructure and mechanical properties of laser-MIG hybrid welding of 1420 Al-Li alloy. Int. J. Adv. Manuf. Technol. 2013;66:1467-1473. https://doi.org/10.1007/s00170-012-4431-6

Orishich AM, Malikov AG, Mesenzova IS, Pavlov NA, Karpov EV. Obtaining high-quality welded joints of aluminum alloys 1420 and 1424 made by laser welding and post heat treatment. AIPConferenceProceedings. 2018;2051:1-4.https://doi.org/10.1063/1.5083461

Gureeva MA, Grushko OE, Ovchinnikov VV, Egorov RV. Vliyanie termoobrabotki na ostatochnye napryazheniya, strukturno-fazovoe sostoyanie i ekspluatacionnye harakteristiki svarnyh soedinenij splava 1420 [The effect of heat treatment on residual stresses, structural-phase state and operational characteristics of welded joints of alloy 1420]. Procurement production in mechanical engineering. 2008;11:20-24. (in Russ.).

Yanling Zh, Hongliang H, Jing B, Yaoqi W. Influence of Pulsed Current on Superplasticity of Fine Grained 1420 Al-Li Alloy. IOP Conf. Series: Materials Science and Engineering. 2018;301:1-7. https://doi.org/10.1088/1757-899X/301/1/012080

Fan W, Wei Ch, Bing Zh. Diffusion Bonding of 1420 Al-Li Alloy by Pure Alumimun Foil as Interlayer. MDPI Materials. 2020;13:1-12. https://doi.org/10.3390/ma13051103

Downloads

Published

2022-04-25

How to Cite

Ablakatov, I., Baiserikov, B., Ismailov, M., & Nurgozhin, M. (2022). Aluminum-lithium alloys: types, properties, application, and production technologies. Overview. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 323(4), 5–14. https://doi.org/10.31643/2022/6445.34

Issue

Section

Engineering and technology