The effect of carbon fabrics modification on the strength of carbon fiber reinforced plastic
DOI:
https://doi.org/10.31643/2019/6445.18Keywords:
carbon fiber reinforced plastic, carbon fabrics, modification, strength.Abstract
This article reviews the study of influence of carbon fabrics modification on the strength of carbon fiber reinforced plastic. Two types of epoxy compound Etal Inject SLM of “cold curing” and Etal Inject-T of “heat curing”, nitric acid HNO3 of concentration 60 %, carbon fabric of Toho Tenax/Aksa 3k-1200-200 were used in the study. Comparisons of the strength properties of carbon plastic on these compounds were given. The best result was obtained on Etal Inject-T with tensile strength – 1000 MPa and in compression – 425 MPa. Carbon fabric modification was carried out by grafting carboxylated groups treated with HNO3 to the carbon fiber surface. The treatment time in acid varied from 0.5 to 6 minutes. The compressive strength by 17 % from 425 MPa to 497 MPa has been established to increase when carbon fiber by HNO3 is modified for from 0.5 min to 2 min, then the strength decreases enlarging the treatment time. The decrease in strength is associated with supersaturation of the surface of the fibers with carboxyl groups, which were destroyed during heat treatment. Thus, the surface oxidating of carbon fabric is the most effective method of increasing its adhesion to epoxy resin and the strength of carbon fiber. The functional groups formed during the oxidation process allow for a tight cross-linking of the epoxy matrix with carbon fiber. It was previously found that the strength of carbon fiber increases with the modification of epoxy resin with oxidized carbon nanotubes. An assumption is made about a uniform mechanism for strengthening carbon-fiber reinforced plastic due to chemically active functional groups, both on the surface of carbon fiber and on the surface of carbon nanotubes.
Downloads
References
Uglerodnye volokna (Carbon fiber) pod red. S. Simamury. – M.: Mir, 1987. 304. (in Russ.).
Uglerodnye volokna i uglekompozity (Carbon fiber and carbon composite). Pod red. EH. Fitcera. M.: Mir, 1988. 336 .(in Russ.)
Moreno-Castilla C., Ferro-Garcia M. A., Joly J. P., Bautista-Toledo I., Carrasco-Marin F., Rivera.-Utrilla J.Activated carbon surface modifications by nitric acid,hydrogen peroxide, and ammonium peroxydisulfatetreatments // Langmuir 1995. 11, 4386 - 4392. (in Eng.). https://doi.org/10.1021/la00011a035
Tihomirov A.S., Sorokina N.E., Avdeev V.V.Modificirovanie poverhnosti uglerodnogo volokna rastvorami azotnoj kisloty (Modifying the carbon fiber surface with nitric acid solutions). Neorganicheskie materialy. 2011. 6, 684-688. (in Russ.)
Grigoryan N.S., Gubanov A.A, Vagramyan T.A., Korshak YU.V.Elektrohimicheskaya modifikaciyapoverhnosti uglerodnogo volokna (Electrochemicalmodification of the surface of carbon fiber). ZH.prikladnoj himii. 2015. 88, 1059-1065.https://doi.org/10.1134/s1070427215070083 (in Russ.)
Yermakhanova A.M., Ismailov M.B. Carbon nanoparticles influence on mechanical properties of epoxide resin and carbon composite.Review. Complex Use of Mineral Resources – Almaty,2016. 4, 63-73. (in Eng.)
D'yachkova T.P., Tkachev A.G. Metody ifunkcionalizacii modificirovaniya uglerodnyh (Methodsnanotrubokof functionalization and modification of carbon nanotubes). –M.: Spektr, 2013. 152.(in Russ.).
Pittman C. U., JRChemical modification ofcarbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine, Carbon 1997.35, 317-331.https://doi.org/10.1016/s0008-6223(97)89608-x(in Eng.)
Pittman С. U., JR Reactivitiesof amine functions grafted to carbon fiber surfaces by tetraethylenepentamine. Designing interfacial bonding, Carbon 1997.35, 929-943.https://doi.org/10.1016/s0008-6223(97)00047-x(in Eng.)
Ryabov S.A., Zaharychev E.A., Semchikov YU.D. Issledovanie vliyaniya vremeni funkcionalizacii uglerodnyh nanotrubok na fiziko-mekhanicheskie svojstva polimernyh kompozitov na ih osnove(Investigation of the effect of the time of functionalization of carbon nanotubes on the physicomechanical properties of polymer composites based on them). Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2013.2 (1), 71–74 (in Russ.).
Zhang X., Pei X., Jia Q., Wang Q. Effects of CFs surface treatment on the tribological properties of 2D woven carbon fabric/polyimide composites.Appl Phys A 2009. 95,793–9.https://doi.org/10.1007/s00339-009-5073-x(in Eng.)
Liliana Burakowski Noharaa*, GilbertoPetraconi Filhob, Evandro Luís Noharac, Maurício Urban Kleinked, Mirabel Cerqueira Rezendee. Evaluation of Carbon Fiber Surface Treated by Chemical and Cold Plasma Processes.Materials Research, Vol. 8, No. 3, 281-286, 2005. https://doi.org/10.1590/s1516-14392005000300010(in Eng.)
Varshavskij V.YA.Uglerodnye volokna(Carbon fiber). M: V.YA. Varshavskij FGUP PIK VINITI 2005. 500 (in Russ.).
TU 2257–Inzhekt–18826195–12.[Electron.resource].–URL http: //www.epital.ru/infu/t.html(accessed date 20.01.2019)
TU 2257 –3570 ̶18826195 ̶03 [Electron.resource]. –URL http://www.epital.ru/infu/slm.html(accessed date 20.01.2019
Kompozity polimernye. Metody ispytanij. Ispytaniya na rastyazhenie (Polymer composites. Test methods. Tensile tests). Izdanie oficial'noe. Moskva 2014.9.(in Russ.).
Ermahanova A.M., Ismailov M.B.Vliyanie uglerodnyh nanotrubok na uprugo-prochnostnye svojstva ugleplastika(The effect of carbon nanotubes on the elastic-strength properties of carbon fiber). X Mezhdunarodnyj Simpozium «Fizika i himiya uglerodnyh i nanoehnergeticheskih materialov», 12-14 sentyabrya 2018.179-184. (in Russ.).
Nussupov, K. K., Beisenkhanov, N. B., Zharikov, S. K., Beisembetov, I. K., Kenzhaliev, B. K., Akhmetov, T. K., & Seitov, B. Z.Structure and composition of silicon carbide films synthesized by ion implantation. Physics of the Solid State.-2014. 56(11), 2307–2321. https://doi.org/10.1134/s1063783414110237(In Eng.).
Yermakhanova A. M., Ismailov M. B. Vliyaniye uglerodnykh nanotrubok na protsess otverzhdeniya i prochnost' epoksidnoy smoly. // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ. –2018. –No4. –p. 105-114. https://doi.org/10.31643/2018/6445.36(InRuss.).
KenzhaliyevB.K., TrebukhovS.A., VolodinV.N., TrebukhovA.A., TuleutayF.KH. Izvlecheniye selena iz promproduktov metallurgicheskogo proizvodstva// KompleksnoeIspolʹzovanieMineralʹnogosyrʹâ. –2018. –No4. –p. 11-16.https://doi.org/10.31643/2018/6445.30 (In Russ.)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mustafa, L., Yermakhanova, A., & Ismailov, M.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.