Obtaining hydroxyapatite coatings by mechanochemical interaction
DOI:
https://doi.org/10.31643/2020/6445.29Keywords:
coating, powder, titanium, hydroxyapatite, implant, cold spraying, nozzle, sandblastingAbstract
The research represents a newly-developed simple method to apply hydroxyapatite by gas-dynamic spraying. The hydroxyapatite coating formed on VT1-0 titanium were obtained following the mechanochemical interaction of hydroxyapatite and titanium with gas-dynamic spraying. The article proposes the phase composition, surface morphology, and roughness of these coatings. The surface morphology of the hydroxyapatite coating had a porous structure. The transverse sections of coatings were researched to study the interaction of hydroxyapatite with a titanium base. It was shown that the coatings mainly form in the titanium bedding depressions. Analyzing the roughness parameter Ra of hydroxyapatite coatings made it possible to conclude that the samples obtained fell almost within the same limits. These data are within the roughness optimum (Ra = 2-3 μm) of artificial surfaces aimed to manifest the best human osteogenic properties. The analyzed phase composition enabled to establish the fact that the hydroxyapatite layer composition does not change significantly after spraying that is important for biomedical use
Downloads
References
Thian, E. S., Loh, N. H., Khor, K. A., & Tor, S. B. (2002). Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials, 23(14), 2927–2938. (In Eng.). https://doi.org/10.1016/s0142-9612(01)00422-7
Surowska, B., Bieniaś, J., Walczak, M., Sangwal, K., & Stoch, A. (2004). Microstructure and mechanical properties of ceramic coatings on Ti and Ti-based alloy. Applied Surface Science, 238(1-4), 288–294. (In Eng.). https://doi.org/10.1016/j.apsusc.2004.05.219
Khor, K. ., Gu, Y. ., Quek, C. ., & Cheang, P. (2003). Plasma spraying of functionally graded hydroxyapatite/Ti–6Al–4V coatings. Surface and Coatings Technology, 168(2-3), 195–201.(In Eng.). https://doi.org/10.1016/s0257-8972(03)00238-x
Zheng, B., Luo, Y., Liao, H., & Zhang, C. (2017). Investigation of the crystallinity of suspension plasma sprayed hydroxyapatite coatings. Journal of the European Ceramic Society, 37(15), 5017–5021. (In Eng.). https://doi.org/10.1016/j.jeurceramsoc.2017.07.007
Yessengaziyev, A. M., Ultarakova, A. A., & Uldakhanov, O. H. (2019). Calcium nitrate generating out of nitrogen-acid solutions after breaking up slurries of titanium production. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 4(311), 74–81.(In Eng.). https://doi.org/10.31643/2019/6445.40
Kenzhegulov A.K.., Mamaeva А.А., Panichkin А.V. Issledovanie kal’tsij-fosfatnyh pokrytij, poluchennye metodom VCH magnetronnogo raspylenia(Investigation of calcium phosphate coatings obtained by HF magnetron sputtering). Vestnik KazNITU =Bulletin of Satbayev university.2018. 6,271-276. (in Rus).
Asri, R. I. M., Harun, W. S. W., Hassan, M. A., Ghani, S. A. C., & Buyong, Z. (2016). A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. Journal of the Mechanical Behavior of Biomedical Materials,57, 95–108. (In Eng.). https://doi.org/10.1016/j.jmbbm.2015.11.031
Balihin А.V., Simonov М.I., Poluchenie titana, splavov i kompozitsionnyh materialov metodom elektroliza oksidov v rasplave hlorida kal’tsia: ffc cambridge process. Obzor(Obtaining titanium, alloys and composite materials by electrolysis of oxides in a calcium chloride melt: ffc cambridge process. Review) Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. = Complex Use of Mineral Resources. 2017. 4,12-20. (in Rus).
Guillem-Marti, J., Cinca, N., Punset, M., Cano, I. G., Gil, F. J., Guilemany, J. M., & Dosta, S. (2019). Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids and Surfaces B: Biointerfaces,180, 245–253. (In Eng.). https://doi.org/10.1016/j.colsurfb.2019.04.048
Harun, W. S. W., Asri, R. I. M., Alias, J., Zulkifli, F. H., Kadirgama, K., Ghani, S. A. C., & Shariffuddin, J. H. M. (2018). A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International,44(2), 1250–1268.(In Eng.). https://doi.org/10.1016/j.ceramint.2017.10.162
Noorakma, A. C. W., Zuhailawati, H., Aishvarya, V., & Dhindaw, B. K. (2013). Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies. Journal of Materials Engineering and Performance, 22(10), 2997–3004.(In Eng.). https://doi.org/10.1007/s11665-013-0589-9
Stoltenhoff, T., Kreye, H., & Richter, H. J. (2002). An Analysis of the Cold Spray Process and Its Coatings. Journal of Thermal Spray Technology, 11(4), 542–550.(In Eng.). https://doi.org/10.1361/105996302770348682
Heimann, R. B. (2006). Thermal spraying of biomaterials. Surface and Coatings Technology, 201(5), 2012–2019.(In Eng.). https://doi.org/10.1016/j.surfcoat.2006.04.052
Faucheux, N., Schweiss, R., Lützow, K., Werner, C., & Groth, T. (2004). Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials, 25(14), 2721–2730.(In Eng.). https://doi.org/10.1016/j.biomaterials.2003.09.069
Cinca, N., Vilardell, A. M., Dosta, S., Concustell, A., Garcia Cano, I., Guilemany, J. M., ... Peiró, F. (2016). A New Alternative for Obtaining Nanocrystalline Bioactive Coatings: Study of Hydroxyapatite Deposition Mechanisms by Cold Gas Spraying. Journal of the American Ceramic Society, 99(4), 1420–1428. (In Eng.). https://doi.org/10.1111/jace.14076
Vilardell, A. M., Cinca, N., Cano, I. G., Concustell, A., Dosta, S., Guilemany, J. M., ... Peiró, F. (2017). Dense nanostructured calcium phosphate coating on titanium by cold spray. Journal of the European Ceramic Society, 37(4), 1747–1755. (In Eng.). https://doi.org/10.1016/j.jeurceramsoc.2016.11.040
Vilardell, A. M., Cinca, N., Garcia-Giralt, N., Dosta, S., Cano, I. G., Nogués, X., & Guilemany, J. M. (2020). In-vitro comparison of hydroxyapatite coatings obtainedby cold spray and conventional thermal spray technologies. Materials Science and Engineering: C, 107, 110306.(In Eng.). https://doi.org/10.1016/j.msec.2019.110306
Pervushin D.А., Shishkovskij I.V., Smurov I.Yu. Gazodinamicheskoe napylenie gidroksiapatita na meditsinskie instrumentarij iz titanovyh splavov (Gas-dynamic spraying of hydroxyapatite on medical instruments made of titanium alloys).Izvestia vysshyh uchebnyh zavedenij. Poroshkovaiametallurgia i funktsional’nye pokrytia = Proceedings of higher educational institutions. Powder metallurgy and functional coatings. 2012. 4,66-70. (in Rus).
Gnedkov S.V., Sharkeev Yu.P., Sinebryuhov S.L., Hrisanfova О.А., Legostaeva Е.V., Zavidnaia А.G., Puz’ А.V., Hlusov I.А. Kal’tsij-fosfatnoe bioaktivnoe pokretia na titane(Calcium Phosphate Bioactive Coatings on Titanium). Vestnik DVO RAN = Bulletin of DVO RAN.2010. 5,47-57.(in Rus).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Mamaeva, А., Kenzhegulov, А., Panichkin, А., & Shah, А.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.