The effect of the catalytic layer composition on the hydrogen permeability of assymetric tantalum-based membranes

Authors

  • A.V. Panichkin Satbayev University, Institute of Metallurgy and Beneficiation
  • B.K. Kenzhaliyev Satbayev University, Institute of Metallurgy and Beneficiation
  • A.K. Kenzhegulov Satbayev University, Institute of Metallurgy and Beneficiation
  • A.T. Imbarova Satbayev University, Institute of Metallurgy and Beneficiation
  • Zh.A. Кarboz Satbayev University, Institute of Metallurgy and Beneficiation
  • A. Shah Sultan Idris Education University, Malaysia

DOI:

https://doi.org/10.31643/2020/6445.40

Keywords:

composite membrane, tantalum, metal catalytic overcoat, hydrogen permeability, dilatation.

Abstract

The paper offers the measuring results for hydrogen permeability of the membranes made of 40 μm thick tantalum foil covered with a metallic film with different thicknesses on one side. The measurements were performed when the membranes were in contact with a commercial argon and hydrogen gases mixed at the ratio of 1/5 at an overpressure of 500 kPa and at 580-585°C. It is shown that films of Mo, Re, W, Cu, Co, and Ni metals deposited on the tantalum membrane surface from the side facing a hydrogen-containing gas mixture increase its hydrogen permeability. The effect degree of these metals increases in the specified row from left to right. The effect on the hydrogen permeability of tantalum membranes, comparable to and superior to the deposition of a Pd film, exerts the deposition of Cu, Co, and Ni films. It is explained by the high hydrogen permeability level of these metals and the catalytic activity of their surface that results in intense hydrogen dissociation. The value of the hydrogen permeability of the membranes naturally increases with a thickness decrease of metallic films, however, it is obvious that this behavior is not linear. The hydrogen permeability of membranes with Cu, Co, and Ni films decreases over time, that is explained by the oxygen segregation at the Ta membrane/film interface, as well as by the processes on the membrane surface in contact with the gas mixture. The nature of these processes should be studies since the lower oxides of these metals are reduced by hydrogen at this temperature.

Downloads

Download data is not yet available.

Author Biographies

A.V. Panichkin, Satbayev University, Institute of Metallurgy and Beneficiation

Сandidate of Technical Sciences, Head of the National Scientific Laboratory, Institute of Metallurgy and Ore Beneficiation.

B.K. Kenzhaliyev, Satbayev University, Institute of Metallurgy and Beneficiation

Doctor of technical sciences, General Director - Chairman of the Board of the Institute of Metallurgy and Ore Benefication, Almaty, Kazakhstan.

A.K. Kenzhegulov, Satbayev University, Institute of Metallurgy and Beneficiation

PhD, Researcher of the Laboratory of Metall Science, Institute of Metallurgy and Ore Beneficiation, Almaty, Kazakhstan.

A.T. Imbarova, Satbayev University, Institute of Metallurgy and Beneficiation

Researcher of the Laboratory of Metall Science, Institute of Metallurgy and Ore Beneficiation, Almaty, Kazakhstan

Zh.A. Кarboz, Satbayev University, Institute of Metallurgy and Beneficiation

Engineer of the Laboratory of Metall Science, Institute of Metallurgy and Ore Beneficiation, Almaty, Kazakhstan.

A. Shah, Sultan Idris Education University, Malaysia

Professor, Dr., Faculty Technical and Vocational, Sultan Idris Education University, 35900 Tanjung Malim, Perak Malaysia.

References

Dolan M.D. (2010). Non-Pd BCC alloy membranes for industrial hydrogen separation. // Journal of Membrane Science. 362, 12–28. https://doi.org/10.1016/j.memsci.2010.06.068 (In Eng.).

Sarker S., Chandra D., Hirsche M. and over. (2016).Developments in the Ni–Nb–Zr amorphous alloy membranes.//Applied physics A. Materials ScienceProcessing.P.122-168. https://doi.org/10.1007/s00339-016-9650-5 (In Eng.).

Ding H. Y., Zhang W., Yamaura S.I., YaoK.F. (2013). Hydrogen permeable Nb-based аmorphous аlloys with high thermal stability.//Materials Transactions. 54 (8), 1330-1334. https://doi.org/10.2320/matertrans.MF201310 (In Eng.).

Panichkin A.V.,Derbisalin A.M., Mamayeva A.A., Dzhumabekov D.M.,Imbarova A.T. (2017).Hydrogen permeability of membranes based on niobium andtantalum foils in the atmosphere of technical purity hydrogen. // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu.3, pp. 42-47. https://doi.org/10.31643/2018/166445 (in Eng).

Busnyuk A.O.,Notkin M.E.,Grigoriadi I.P.,Alimov V.N.,Livshits A.I. (2010). Termicheskaya degradatsiya palladiyevogo pokrytiya vodorodopronitsayemykh membran iz niobiya[Thermal degradation of the palladium coating of hydrogen permeable niobium membranes]. // Zhurnal tekhnicheskoy fiziki.80(1). 117-124. (in Rus).

Young S.J ., Chan H.L., Seong Y.K., Kwan Y.L., Chang W.Y., Suk W.N., Jonghee H. (2018). Characterization of a Pd/Ta composite membrane and its application to a large scale high-purity hydrogen separation from mixed gas.// Separation and Purification Technology.200. 221-229. https://doi.org/10.1016/j.seppur.2017.12.019 (In Eng.).

Livshits A.I., Notkin M.E.,Alimov V. N., Busnyuk // Patent RF 129416. 11.09.2012. Membrana dlya vydeleniya vodoroda iz gazovykh smesey[Membrane for hydrogen recovery from gas mixtures]. A.O.(in Rus).

Hatano Y., Ishiyama K., Homma H., Watanabe K.(2007). Improvement of high temperature stability of Pd coating on Nb by intermediate layer comprising NbC and Nb2C. //Journal of Alloys and Compounds.446 –447, 539-542.(InEng.).

Hatano Y., Ishiyama K., Homma H., Watanabe K.(2007). Improvement in high temperature stability of Pd coating on Nb by Nb2C intermediate layer. // International Journal of Hydrogen Energy.32, 615-619. https://doi.org/10.1016/j.ijhydene.2006.06.045 (In Eng.).

Dye R.C., Snow R. //. Патент. США.6,214,090. 10.04.2001. Thermally tolerant multilayer metal membrane. (In Eng.).

Karthikeyan A., Martindale C., MartinS.W. (2004).Preparation and characterization of new proton conducting chalcogenide glasses. // Journal of Non-Crystalline Solids. 349,215-222. https://doi.org/10.1016/j.jnoncrysol.2004.08.145 (In Eng.).

NozakiT., HatanoY. (2013). Hydrogen permeation through a Pd/Ta composite membrane with a HfN intermediate layer. // International Journal of Hydrogen Energy.38(27), P. 11983-11987. https://doi.org/10.1016/j.ijhydene.2013.07.012 (In Eng.).

Glazunov G.P.. Azhazha V.M.,Andreyev A.A.,Baron D.I.,Volkov E.D.,Konotopskiy A.L.,Neklyudov I.M.,SvinarenkoA.P. (2007). Kinetika proniknoveniya vodoroda v dvukhsloynykh diffuzionnykh sistemakh na osnove tsirkoniya i palladiya[Kinetics of hydrogen permeation in two-layer diffusion systems based on zirconium and palladium]. // Voprosy atomnoy nauki i tekhniki. Seriya: Fizika radiatsionnykh povrezhdeniy i radiatsionnoye materialovedeniye.6. 13-17. (in Rus).

Glazuno G.P. (1995). Issledovaniye vliyaniya tonkikh metallicheskikh plenok na vodorodopronitsayemost palladiyevykh membran pri nizkikh davleniyakh[Study of the effect of thin metal films on the hydrogen permeability of palladium membranes at low pressures]. // Voprosy atomnoy nauki i tekhniki. Seriya. Vakuum. chistyye metally. sverkhprovodniki. 1. 72-80.(in Rus).

StewardS. A.// ReviewofHydrogenIsotope permeabilityThrough Materials. LawrenceLivermoreNationalLaboratoryReportUCRL-53441. DE84007362. Available from: National Technical Information Service, US Department of Commerce, Springfield, VA, USA, 1984. https://doi.org/10.2172/5277693 (In Eng.).

Robert E. Buxbaum, Terry L. Marker. (1993). Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium. //Journal of Membrane Science.85, 29-38. https://doi.org/10.1016/0376-7388(93)85004-g (In Eng.).

Basile A.(2013). Handbook of Membrane Reactors 1st Edition. Reactor Types and Industrial Applications.Woodhead Publishing. 968.(In Eng.).

GlazunovG.P., VolkovE.D., HassaneinA. (2000). Hydrogen behavior in bimetallic systems: permeation through thin metal films. //Problems of Atomic Science and Technology. Series: Plasma Physics (5).3. 102-104.(In Eng.).

Panichkin A.V., Kenzhaliyev B.K., Derbisalin A.M., Mamayeva A.A., Dzhumabekov D.M. (2017). Hydrogen permeable membranes based on niobium foils coated with layer of tungsten and molybdenum in niobium solid solution characteristics research.// 2nd International Symposium on Mechanical Engineering and Material Science.134, 38-41. (InEng.).

CheolY.K., HongS.C., GuY., KyoungW.P., Eric F. (2010). Hydrogen Permeation of Pd-Free V-Based Metallic Membranes for Hydrogen Separation and Purification // Materials Science Forum.654-656, 2831-2834.(In Eng.).

Yamaura S., Inoue A. (2010). Effect of surface coating element on hydrogen permeability of melt-spun Ni40Nb20Ta5Zr30Co5amorphous alloy // Journal of Membrane Science. 138-144.(In Eng.).

Panichkin A.V., Derbissalin A.M., Imbarova A.T., Dzhumabekov D.M., AlibekovZh.Zh. (2017). Improvement of methodology and equipment for determination of hydrogen performance of thin flat metallic membranes // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu.2, pp. 46-52. https://doi.org/10.31643/2018/166445 (In Eng.).

Rothenberger K.S., Howard B.H., Cugini A.V., Enick R.M., Bustamante F., Ciocco M.V., Morreale B.D., Buxbaum R.E. (2002). Hydrogen permeability of tantalum-based membrane materials at elevated temperature and pressure. //Fuel Chemistry Division Preprints.47(2), 814-815.(In Eng.).

Samhun Y., Ted S.O. (2011). Correlations in palladium membranes for hydrogen separation: A review. //Journal of Membrane Science.375, 28–45.(In Eng.).

VincencN., JanezK., CristianL.,PorosnicuC.(2014). Characterization of tungsten films and their hydrogen permeability. JournalofVacuumScience&TechnologyAVacuumSurfacesandFilms. 32(6):061511.(In Eng.).

Keiichiro U.K.,Katayama., FukadaD.S.(2015). Hydrogen gas driven permeation through tungsten deposition layer formed by hydrogen plasma sputtering.// Fusion Engineering and Design. 98–99, 1341-1344.(In Eng.).

RothenbergerK.S.,HowardB.H., KillmeyerR.P., CuginiA.V., EnickR.M., BustamanteF., CioccoM.V., MorrealeB.D., Buxbaum R.E.(2003). Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures. // Journal of Membrane Science.218, 19–37.(In Eng.).

TanabeT., YamanishiY., ImotoS.(1992). Hydrogen permeation and diffusion in molybdenum. // JournalofNuclearMaterials. 191–194, 439–443. https://doi.org/10.1016/S0022-3115(09)80083-4 (In Eng.).

Downloads

Published

2020-12-15

How to Cite

Panichkin, A., Kenzhaliyev, B., Kenzhegulov А., Imbarova А., Кarboz Z., & Shah А. (2020). The effect of the catalytic layer composition on the hydrogen permeability of assymetric tantalum-based membranes. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 315(4), 82–95. https://doi.org/10.31643/2020/6445.40