Formation of sylicides of aluminium in the Al-Si-Ti system
DOI:
https://doi.org/10.31643/2019/6445.12Keywords:
discrete fillers, aluminum matrix composite antifriction materials, titanium aluminum silicides, Al-Si-Ti system.Abstract
Currently used discrete fillers of cast aluminum matrix composite antifriction materials in most cases are characterized by high hardness, leading to increased wear of steel pairs of friction, which makes the search for new fillers urgent. Due to the formation of titanium aluminosilicates in the Al-Ti-Si system and the insignificant solubility of silicon and titanium in aluminum, it was suggested that it is possible to obtain composite materials based on them by the in-situ method or by synthesizing reinforcing materials in a liquid metal matrix. The introduction of titanium in the amount of 10 wt. % into the melts of Al-10÷20 wt. % Si at 700, 800 and 900 °C and subsequent isothermal holding the composite materials are synthesized. By melting in the range of 1000-1100 °C the Al-10÷25 wt. % Si-5÷15 wt. % Ti materials are obtained The phase composition of these materials and the content of elements in the primary phases formed in the aluminum matrix, the hardness of materials obtained by melting is determined. Studies of the formation of phases in the Al-Si-Ti system showed that under the conditions of their synthesis in the liquid phase as a result of reaction-diffusion, a large spectrum of aluminosilicates is formed, which are characterized by a dispersed structure. Under such conditions, since the processes are far from equilibrium, the formation of phases that cannot form during crystallization from the melt under conditions of its cooling is possible. This makes it possible, by varying the synthesis temperature and composition of the charge materials, in wide intervals, to change the properties of the resulting aluminum-matrix composite materials. Similar composite alloys that form during crystallization from the melt are characterized by a more coarse-crystalline structure and a substantially smaller spectrum of silicides, which obviously impairs their properties. The tests of the composite material of composition 85 % Al-15 % Si – 10 % Ti for friction-wear showed that it is characterized by high tribological characteristics. A significant advantage of the materials of the Al-Si-Ti system is the absence of solid phases capable of damaging the surface of the counter body made of steel. This makes promising further studies of the tribotechnical characteristics of the composites of this system.
Downloads
References
Hashim J., Looney L., Hashmi M.S.J. Metalmatrixcomposites: production by the stir casting method.Journal of Materials Processing Technology.1999. 92-93. 1-7. https://doi.org/10.1016/S0924-0136(99)00118-1(in Eng).
Panichkin A.V., Kenzhaliyev B.K., Kshibekova B.B., Alibekov Zh.Zh., Imbarova А.Т. Graphite contact phenomena developing ininteraction with rare earth elements doped aluminum alloys studying.2nd International Symposium on Mechanical Engineering and Material Science (ISMEMS 2017).Series:Advances in Engineering Research. 134.60 -64. https://doi.org/10.2991/ismems-17.2018.14.(in Eng).
Panichkin A.V.. Karpenyuk A.N.Vaysman A.D. Kshibekova B.B. Kontaktnoye vzaimodeystviye rasplava alyuminiya s nemetallicheskimi materialami (S. SiC. CaSiO3) (Contact interaction of molten aluminum with non-metallic materials (C, SiC, CaSiO3))Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ.2009. 1. 68-74.www.kims-imio.kz(in Russ).4Panichkin A.V.,Karpenyuk A.N.,Vaysman A.D.,Kshibekova B.B. Struktura diffuzionnoy zony pri kontaktnom vzaimodeystvii zhidkikh siluminov s grafitom. karbidom kremniya i vollastonitom(The structure of the diffusion zone in the contact interaction of liquid silumin with graphite, siliconcarbide and wollastonite).Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ. 2009. 2. 66-71.www.kims-imio.kz(in Russ).
Panichkin A.V.,Soymin N.Ya.,Karpenyuk A.N.,Ermekov G.A., Kshibekova B.B. Ispolzovaniye vollastonita kak napolnitelya metallomatrichnykh kompozitsionnykh materialov i modifikatora struktury splavov (Use of wollastonite as a filler of metal matrix composite materials and modifier of the structure of alloys).Tsvetnyye metally=Non-ferrous metals.2010. 4.73-77.(in Russ).
Casati R. Aluminum Matrix Composites Reinforced with Alumina Nanoparticles.2016. XII. 126.(in Eng).
Panichkin A.V.,Kalashnikov I.E.,Kshibekova B.B.,Imbarova A.T. Razrabotka novogo napolnitelya dlya diskretnogo armirovaniya litykh alyumomatrichnykh kompozitsionnykh materialov karbidom titana(Development of a new filler for discrete reinforcement of cast aluminum-matrix composite materials with titanium carbide).Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ. 2018.2. 76 -88.https://doi.org/10.31643/2018/6445.9(in Russ).
Surappa M. K. Aluminium matrix composites: Сhallenges and opportunities. Sadhana. 2003.28. 1-2. 319-334. https://doi.org/10.1007/bf02717141(in Eng).
Tong X. C.,Fang H. S. Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology: Part II. Mechanical behavior.Metallurgical and Materials Transactions A. 1998. 29.3.893–902. https://doi.org/10.1007/s11661-998-0279-7(in Eng).
Hosking F. M, Portillo F., Wunderlin R., Mehrabian R. Composites of aluminum alloys; fabrication and wear behavior.J. Mater. Sci. 1982.7. 2. 477-498.https://doi.org/10.1007/BF00591483(in Eng).
Ibrahim I.A., Mohamed, F.A., Lavernia E.J. Particulate reinforced metal matrix composites —a review. J. Mater. Sci. 1991. 26. 1137. https://doi.org/10.1007/BF005444483(in Eng).
Rohatgi P. Cast aluminum-matrix composites for automotive applications. JOM. 1991.43. 4. 10-15. https://doi.org/10.1007/BF03220538(in Eng).
Amosov A.P. Lityye SVS-kompozity.(Cast SHS composites)Liteynoye proizvodstvo=Foundry.1999.1. 36-37.(in Russ).
Luts A.R.,Galochkina I.A. Alyuminiyevyye kompozitsionnyye splavy-splavy budushchego.(Aluminum composite alloys are the alloys of the future). Samara: Samar. state tech. un-t. 2013.82.(in Russ).
Chernysheva T.A., Kurganova Yu.A., Kobeleva L.I., Bolotova L.K., Kalashnikov I.E., Katin I.V., Panfilov A.V.,Panfilov A.A. Kompozitsionnyye materialy s matritsey iz alyuminiyevykh splavov, uprochnennykh chastitsami, dlya par treniya skolzheniya(Composite materials with a matrix of aluminum alloys, hardened by particles, for sliding friction pairs). Konstruktsii iz kompozitsionnykh materialov=Constructions made of composite materials. 2007.3. 38-48.(in Russ).
Material Science International Team, MSIT®. Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. Al-Si-Ti (Aluminium -Silicon -Titanium). /by ed. Effenberg G., IlyenkoS. Group IV: Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology). 2006.11.Subvolume A: Light Metal Systems. -Part 4: Selected Systems from Al-Si-Ti to Ni-Si-Ti. Springer, Berlin, Heidelberg. 1-15. https://doi.org/10.1007/11008514_2(in Eng).
Kenzhaliyev, B.K., Kuldeyev, E.I., Abdulvaliyev, R.A, Pozmogov, V.A., Beisembekova, K.O., Gladyshev, S.V., Tastanov, E.A. Prospects of aluminum industry development in Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2017. 3(423), с. 151-160 (in Eng).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Panichkin, A., Kshibekova, B., & Imbarova, А.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.