Flowsheet Design and Modelling for High Purity Praseodymium and Neodymium by Solvent Extraction

Authors

  • N. Zulkifli Universiti Malaysia Kelantan
  • N. Shoparwe Universiti Malaysia Kelantan
  • A.H. Yusoff Universiti Malaysia Kelantan
  • A.Z. Abdullah Universiti Sains Malaysia
  • M.N. Ahmad Universiti Islam Antarabangsa Malaysia

DOI:

https://doi.org/10.31643/2027/6445.35

Keywords:

REE separation, solvent extraction, P507, equilibrium curve, extraction stages.

Abstract

Purifying rare earth elements (REEs) from ion-adsorbed clay (IAC) deposits demands complex solvent extraction (SX) setups to achieve commercial-grade purity. This study presents the design and validation of a four-train counter-current SX flowsheet for processing a pre-treated REE chloride liquor sourced from Malaysia’s Jeli deposit.  Using an iterative steady-state mass-balance simulation in Microsoft Excel, the research determines the operational parameters needed to achieve a 4N (99.99%) terminal purity target for each REE stream. The methodology involved pinpointing critical A/B separation cuts and optimising the organic-to-aqueous (O/A) ratios across the cascade.  The results show that the flowsheet effectively fractionates the feedstock, starting with a bulk LREE/HREE separation (Train 1) and culminating in the challenging separation of praseodymium (Pr) and neodymium (Nd) (Train 4).  The simulation identified Pr/Nd separation as the primary technical bottleneck, requiring 62 equilibrium stages (NE) due to a low separation factor (β) of 1.70.  In contrast, simpler bulk splits needed as few as 16 stages.  These findings confirm the theoretical minimum stage requirements (Nmin) and provide a detailed stage-wise concentration profile for each train.  The study concludes that the Pr/Nd circuit dictates the overall plant footprint and capital intensity. The developed flowsheet offers a solid technical blueprint for commercialising Malaysian IAC resources, ensuring high-purity REE recovery through optimised metallurgical design.

Downloads

Download data is not yet available.

Author Biographies

N. Zulkifli, Universiti Malaysia Kelantan

PhD candidate at Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli 17600 Kelantan, Malaysia. ORCID ID: https://orcid.org/0009-0009-4772-0578

N. Shoparwe, Universiti Malaysia Kelantan

Associate Professor at Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli 17600 Kelantan, Malaysia. ORCID ID: https://orcid.org/0000-0002-4329-2459

A.H. Yusoff, Universiti Malaysia Kelantan

Associate Professor at Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli 17600 Kelantan, Malaysia. ORCID ID: https://orcid.org/0000-0003-0229-886X

A.Z. Abdullah, Universiti Sains Malaysia

Professor at School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia. 

M.N. Ahmad, Universiti Islam Antarabangsa Malaysia

Associate Professor at Sustainable Nanotechnology and Computational Chemistry (SuNCoM) Research Group, Department of Chemistry, Kulliyyah of Science, Universiti Islam Antarabangsa Malaysia, 25200 Kuantan, Pahang, Malaysia. ORCID ID: https://orcid.org/0000-0001-5742-0346

References

Balaram V. Rare earth elements, resources, applications, extraction technologies, chemical characterization, and global trade – A comprehensive review. 2024. https://doi.org/10.1016/B978-0-323-99762-1.00041-3

Chang CS, Yusoff AH, Mohamed CAR, Liu SF, Shoparwe NF, Husain NA, & Azlan MN. Geochemistry of rare earth elements in Pahang river sediment, Malaysia. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2024; 331(4):42–50. https://doi.org/10.31643/2024/6445.37

Salehi H, Maroufi S, Mofarah SS, Nekouei RK, & Sahajwalla V. Recovery of rare earth metals from Ni-MH batteries: A comprehensive review. Renewable and Sustainable Energy Reviews. 2023; 178:113248. https://doi.org/10.1016/j.rser.2023.113248

Balaram V. Sustainable recovery of rare earth elements by recycling of E-waste for a circular economy. 2024, 499–544. https://doi.org/10.1016/B978-0-443-22069-2.00023-1

Hua H, Yasuda K, Norikawa Y, & Nohira T. Highly efficient and precise rare-earth elements separation and recycling process in molten salt. Engineering. 2025; 45:165–173. https://doi.org/10.1016/j.eng.2022.12.013

Zhang Y, Gu F, Su Z, Liu S, Anderson C, & Jiang T. Hydrometallurgical recovery of rare earth elements from NdFeB permanent magnet scrap: a review. Metals. 2020; 10(6):841. https://doi.org/10.3390/met10060841

Hermassi M, Granados M, Valderrama C, Ayora C, & Cortina JL. Recovery of rare earth elements from acidic mine waters: An unknown secondary resource. The Science of the Total Environment. 2022; 810:152258. https://doi.org/10.1016/j.scitotenv.2021.152258

Wu M, Yu M, Cheng Q, Yuan Q, Mei G, Liang Q, & Wang L. Flotation recovery of Y2O3 from waste phosphors using ionic liquids as collectors. Chemical Physics Letters. 2023; 825:140608. https://doi.org/10.1016/j.cplett.2023.140608

Gkika DA, Chalaris M, & Kyzas GZ. Review of methods for obtaining rare earth elements from recycling and their impact on the environment and human health. Processes. 2024; 12(6). https://doi.org/10.3390/pr12061235

Shafiee NS, Achmad Bahar AM, & Ali Khan MM. Potential of rare earth elements (REEs) in Gua Musang granites, Gua Musang, Kelantan. IOP Conference Series: Earth and Environmental Science. 2020; 549(1):012027. https://doi.org/10.1088/1755-1315/549/1/012027

Liu T, & Chen J. Extraction and separation of heavy rare earth elements: A review. Separation and Purification Technology. 2021; 276:119263. https://doi.org/10.1016/j.seppur.2021.119263

Dewulf B, Riaño S, & Binnemans K. Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests. Separation and Purification Technology. 2022; 290:120882. https://doi.org/10.1016/j.seppur.2022.120882

Zulkifli N, Shoparwe NF, Yusof AH, Abdullah AZ, & Ahmad MN. From light to heavy: addressing gaps in rare earth element extraction at the lynas advanced materials plant. Malaysian Journal of Bioengineering and Technology (MJBeT). 2024; 1(2):113–120. https://doi.org/10.31643/2024/6445.32

Salehi H, Khani S, Adeli M, & Aboutalebi MR. Multistage hydrometallurgical process for enhanced recovery and individual separation of Nd and Pr from NdFeB magnet scrap. Mineral Processing and Extractive Metallurgy. 2024; 133(1-2):33-41. https://doi.org/10.1177/25726641241233219

Ahmad I, Jamal MA, Iftikhar M, Ahmad A, Hussain S, Asghar H, Saeed M, Yousaf AB, Karri RR, Al-Kadhi NS, Ouladsmane M, Ghfar A, & Khan S. Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol into 4-Aminophenol. Coatings. 2021; 11(5). https://doi.org/10.3390/coatings11050537

Azlina Y, Azlan MN, Halimah MK, Umar SA, El-Mallawany R, & Najmi G. Optical performance of neodymium nanoparticles doped tellurite glasses. Physica B: Condensed Matter. 2022; 577:411784. https://doi.org/10.1016/j.physb.2019.411784

Nazrin SN, Halimah MK, Muhammad FD, Latif AA, Iskandar SM, & Asyikin AS. Experimental and theoretical models of elastic properties of erbium-doped zinc tellurite glass system for potential fiber optic application. Materials Chemistry and Physics. 2021; 259:123992. https://doi.org/10.1016/j.matchemphys.2020.123992

Vani P, Vinitha G, Praveena R, Durairaj M, Sabari Girisun TC, & Manikandan N. Influence of holmium ions on the structural and optical properties of barium tellurite glasses. Optical Materials. 2023; 136:113438. https://doi.org/10.1016/j.optmat.2023.113438

Yusof NN, Abd Azis MN, & Mohammad Yusoff N. Exploring the impact of plasmonic nanoparticles on photoluminescence of Er3+—doped sodium zinc tellurite glass for solid-state laser applications. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2024; 330(3):85-91. https://doi.org/10.31643/2024/6445.32

Azlina Y, Azlan MN, Suriani AB, Shaari HR, Al-Hada NM, Umar SA, Kenzhaliyev BK, Zaid MHM, Hisam R, Iskandar SM, Yusof NN, & Yusoff AH. Incorporation of neodymium, holmium, erbium, and samarium (oxides) in zinc-borotellurite glass: Physical and optical comparative analysis. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2025; 332(1):32–48. https://doi.org/10.31643/2025/6445.03

Kumari H, Ansari GF, Mahajan SK, Rezaul K, & Bairagi S. Study of visible upconversion luminescence in Er3+ and Er3+/Yb3+ doped tungsten tellurite glasses. Materials Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.06.294

Wu Y, Niu C, Wang L, Yang M, & Zhang S. Structural, luminescence, and temperature sensing properties of the Er3+-doped germanate-tellurite glass by excitation at different wavelengths. Journal of Luminescence. 2024; 266:120323. https://doi.org/10.1016/j.jlumin.2023.120323

Zulkifli N, Shoparwe N, Yusof AH, Abdullah, AZ, & Ahmad MN. Ion exchange of lanthanum chloride and Lewatit Monoplus S 108 H resin. Malaysian Journal of Bioengineering and Technology (MJBeT). 2025; 2(3):115-128. https://doi.org/10.70464/mjbet.v2i3.1710

Talan D & Huang. QA review of environmental aspect of rare earth element extraction processes and solution purification techniques. Minerals Engineering. 2022; 179:107430. https://doi.org/10.1016/j.mineng.2022.107430

Traore M, Gong A, Wang Y, Qiu L, Bai Y, Zhao W, Liu Y, Chen Y, Liu Y, Wu H, Li S, & You Y. Research progress of rare earth separation methods and technologies. Journal of Rare Earths. 2023; 41(2):182-189. https://doi.org/10.1016/j.jre.2022.04.009

Pathapati SVSH, Free ML, Sarswat PK. A comparative study on recent developments for individual rare earth elements separation. Processes. 2023; 11(7). https://doi.org/10.3390/pr11072070

Dorozhko, VA, & Afonin MA. Nonstationary separation of Nd and Pr by P507 extractant. E3S Web of Conferences. 2021; 266:02005. https://doi.org/10.1051/e3sconf/202126602005

Pan J, Zhao X, Zhou C, Yang F, & Ji W. Study on solvent extraction of rare earth elements from leaching solution of coal fly ash by P204. Minerals. 2022; 12(12):1547. https://doi.org/10.3390/min12121547

Afonin MA, Nechaev AV, Yakimenko IA, & Belova VV. Extraction of rare earth elements from chloride solutions using mixtures of P507 and Cyanex 272. Compounds. 2024; 4(1):172-181. https://doi.org/10.3390/compounds4010008

Belova VV, Tsareva YuV, & Kostanyan AE. Extraction of rare-earth elements from chloride solutions in multicomponent systems using CYANEX 572. Theoretical Foundations of Chemical Engineering. 2022; 56(5):915-919. https://doi.org/10.1134/S0040579522050025

Belova V, Petyaeva M, & Kostanyan A. Extraction of lanthanides from chloride solutions in hexane–isopropanol–water systems using Cyanex 572. Theoretical Foundations of Chemical Engineering. 2022; 56:595–599. https://doi.org/10.1134/S0040579522040078

Dashti S, Shakibania S, Rashchi F, & Ghahreman A. Synergistic effects of Ionquest 801 and Cyanex 572 on the solvent extraction of rare earth elements (Pr, Nd, Sm, Eu, Tb, and Er) from a chloride medium. Separation and Purification Technology. 2021; 279:119797. https://doi.org/10.1016/j.seppur.2021.119797

Salehi H, Maroufi S, Khayyam Nekouei R & Sahajwalla V. Solvent extraction systems for selective isolation of light rare earth elements with high selectivity for Sm and La. Rare Metals. 2025; 44(3):2071–2084. https://doi.org/10.1007/s12598-024-03019-7

Srivastava V, Werner J, & Honaker R. Design of multi-stage solvent extraction process for separation of rare earth elements. Mining. 2023; 3(3):552–578. https://doi.org/10.3390/mining3030031

Krishnamurthy N, & Gupta CK. Extractive metallurgy of rare earths (0 ed.). CRC Press. 2015. https://doi.org/10.1201/b19055

Merroune A, Ait Brahim J, Berrada M, Essakhraoui M, Achiou B, Mazouz H, & Beniazza R. A comprehensive review on solvent extraction technologies of rare earth elements from different acidic media: Current challenges and future perspectives. Journal of Industrial and Engineering Chemistry. 2024; 139:1–17: https://doi.org/10.1016/j.jiec.2024.04.042

Turgeon K, Boulanger JF, Bazin, C Turgeon K, Boulanger JF, & Bazin C. Simulation of solvent extraction circuits for the separation of rare earth elements. Minerals. 2023; 13(6). https://doi.org/10.3390/min13060714

Downloads

Published

2026-01-20

How to Cite

Zulkifli, N., Shoparwe, N., Yusoff, A., Abdullah, A., & Ahmad, M. (2026). Flowsheet Design and Modelling for High Purity Praseodymium and Neodymium by Solvent Extraction. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 342(3), 111–122. https://doi.org/10.31643/2027/6445.35