Effect of substituting ZnO to ZnF₂ on Optical Properties of Nd³⁺/Tm³⁺ Doped Tungsten-Bismuth-Tellurite Glass
DOI:
https://doi.org/10.31643/2025/6445.34Keywords:
Zinc fluoride, tellurite glass, neodymium, thulium, rare-earthAbstract
Present research explores the impact of varying ZnO and ZnF2 concentrations in Nd3+/Tm3+ doped Tungsten-Bismuth-Tellurite glass for fiber optic and solid-state application. Glasses with formula 60.97TeO2–6.7WO3–3.3 Bi2O3–0.03Nd2O3–1TmO–(28-x)ZnO–xZnF2 where x = 0, 7, 14, 21, 28 mol% is prepared using melt-quenching technique. The absorption and photoluminescene of the glass is measured using a UV-Vis-NIR absorption and Photoluminescence spectrometer. About eight absorption bands are evidenced, centred around 467, 525, 581, 687, 726, 793, 870, 1211, and 1691 nm, corresponding to respective REIs (Nd3+ and Tm3+ ions) transitioning from the ground to their excited state. The absorbance of Tm3+ centred around 1691 nm improved with higher ZnF2 contents (28% mol). Physical parameters such as density, molar volume, molar refractivity, and electronic polarizability are calculated. Seven prominent luminescence peaks of Nd3+ and Tm3+ have been identified centred around 509, 586, 611, 626, 648, 795, 800, and 890 nm. Highest luminescence enhancement is evident at 800 nm which corresponds to glass contained ratio of ZnO/ZnF2 at 3:1. These findings highlight the role of ZnF2 in altering the luminescence properties of the glass for fiber optics and solid-state laser applications.
Downloads
References
Xia L, Zhang Y, Ding J, Li C, Shen X, Zhou Y. Er3+/Tm3+/Nd3+ tri-doping tellurite glass with ultra-wide NIR emission. Journal of Alloys and Compounds. 2021; 863:158626. https://doi.org/10.1016/j.jallcom.2021.158626
Hou G, Cao L, Zhang C, et al. Improvement of ultra-broadband near-infrared emission in Nd3+-Er3+-Pr3+ tri-doped tellurite glasses. Optical Materials. 2021; 111:110547. https://doi.org/10.1016/j.optmat.2020.110547
Kaniyarakkal S, Rajasekharaudayar KC, Dagupati R, et al. Down-/Up-conversion luminescence behaviors and energy transfer analysis in Tm3+ and Tm3+/Yb3+ co-doped tellurite glasses. Inorganic Chemistry Communications. 2023; 158(P1):111395. https://doi.org/10.1016/j.inoche.2023.111395
Elkhoshkhany N, Marzouk S, El–Sherbiny M, et al. Enhanced thermal stability and optical and structural properties of Tm+3 ions in doped tellurite glasses for photonic use. Results in Physics. 2021; 24:104202. https://doi.org/10.1016/j.rinp.2021.104202
Song X, Han K, Zhou D, Xu P, Xue X, Zhang P. ~2 μm emission properties and energy transfer processes in Tm3+ doped Bi2O3-GeO2-Na2O glass laser material. Journal of Luminescence. 2020; 224:117314. https://doi.org/10.1016/j.jlumin.2020.117314
Cao J, Xu P, Song C, et al. Realization of broadband ∼1.8 μm luminescence by level population inversion in Tm3+ doped tellurite glass for laser applications. Journal of Non-Crystalline Solids. 2023; 617:122445. https://doi.org/10.1016/j.jnoncrysol.2023.122445
Lakshminarayana G, Meza-Rocha AN, Soriano-Romero O, et al. Survey of optical and fluorescence traits of Tm3+-doped alkali/mixed alkali oxides constituting B2O3-BaO-ZnO-LiF glasses for 0.45 μm laser and 1.46 μm fiber amplifier. Results in Physics. 2021; 26:104343. https://doi.org/10.1016/j.rinp.2021.104343
Zhao D, Zhu L, Li C, Ding J, Li J, Zhou Y. Broadband near-infrared luminescence property in Nd3+/Tm3+ co-doped tellurite glass. Journal of Alloys and Compounds. 2023; 937:168384. https://doi.org/10.1016/j.jallcom.2022.168384
Djamal M, Yuliantini L, Hidayat R, et al. Spectroscopic study of Nd3+ ion-doped Zn-Al-Ba borate glasses for NIR emitting device applications. Optical Materials. 2020; 107:110018. https://doi.org/10.1016/j.optmat.2020.110018
Kumar A, Anu, Sahu MK, et al. Spectral characteristics of Tb3+ doped ZnF2–K2O–Al2O3–B2O3 glasses for epoxy free tricolor w-LEDs and visible green laser applications. Journal of Luminescence. 2022; 244:118676. https://doi.org/10.1016/j.jlumin.2021.118676
Siva Rama Krishna Reddy K, Swapna K, Mahamuda S, Venkateswarulu M, Rao AS. Structural, optical and photoluminescence properties of alkaline-earth boro tellurite glasses doped with trivalent Neodymium for 1.06 μm optoelectronic devices. Optical Materials. 2021; 111:110615. https://doi.org/10.1016/j.optmat.2020.110615
Feng S, Zhu J, Liu C, et al. The deactivation effects of Nd3+ ion for 2.85 μm laser in Ho3+/Nd3+ co-doped fluorotellurite glass. Journal of Luminescence. 2024; 266:120308. https://doi.org/10.1016/j.jlumin.2023.120308
Zhu L, Zhao D, Li C, Ding J, Li J, Zhou Y. Effect of Nb2O5 on the ∼2.0 μm band luminescence of Ho3+/Tm3+/Ce3+ tri-doped tellurite glass. Ceramics International. 2023; 49(18):30490-30500. https://doi.org/10.1016/j.ceramint.2023.06.313
Zhang C, Han K, Wu T, et al. TeO2-GeO2-BaF2-Tm2O3 glass for ∼2 μm laser materials: Analysis of luminescence features and energy transfer behavior. Ceramics International. 2022; 48(20):30546-30554. https://doi.org/10.1016/j.ceramint.2022.06.335
Li C, Zhang X, Onah VC, et al. Physical and optical properties of TeO2-WO3-GdF3 tellurite glass system. Ceramics International. 2022; 48(9):12497-12505. https://doi.org/10.1016/j.ceramint.2022.01.116
Biswas J, Jana S. Photoluminescence of Tb3+/Sm3+ ions co-activated in SrO - Na2O - WO3 - tellurite glasses for multicolor laser applications. Ceramics International. 2023; 49(15):24718-24729. https://doi.org/10.1016/j.ceramint.2023.04.215
Sayyed MI, D’Souza AN, Prabhu NS, Kamath SD. Comparing basic radiation attenuation factors of tellurite glasses containing PbCl2 and Bi2O3 with some other potential glass systems. Optik. 2022; 249:168247. https://doi.org/10.1016/j.ijleo.2021.168247
Prasad RNA, Venkata Siva B, Neeraja K, Krishna Mohan N, Rojas JI. Influence of modifier oxides on spectroscopic features of Nd2O3 doped PbO-Ro2O3–WO3–B2O3 glasses (with Ro2O3 = Sb2O3, Al2O3, and Bi2O3). Journal of Luminescence. 2020; 223:117171. https://doi.org/10.1016/j.jlumin.2020.117171
Gunha JV, Muniz RF, Somer A, et al. The effect of fluorine replacement on the physical properties of oxyfluorotellurite glasses TeO2-Li2O-ZnO-ZnF2. Journal of Non-Crystalline Solids. 2023; 603:122083. https://doi.org/10.1016/j.jnoncrysol.2022.122083
Rajesham S, Sekhar KC, Shareefuddin M, Kumar JS. Impact of MoO3 on physical and spectroscopic (optical, FTIR, Raman and EPR) studies of B2O3-CdO-Al2O3-ZnF2 glasses for optical and shielding applications. Optik. 2023; 272:170241. https://doi.org/10.1016/j.ijleo.2022.170241
Sanju, Ravina, Anu, et al. Physical, structural and optical characterization of Dy3+ doped ZnF2-WO2-B2O3-TeO2 glasses for opto-communication applications. Optical Materials. 2021; 114:110937. https://doi.org/10.1016/j.optmat.2021.110937
Kilic G, Issever UG, Ilik E. Synthesis, characterization and crystalline phase studies of TeO2–Ta2O5–ZnO/ZnF2 oxyfluoride semiconducting glasses. Journal of Non-Crystalline Solids. 2020; 527:119747. https://doi.org/10.1016/j.jnoncrysol.2019.119747
Ravina, Naveen, Sheetal, et al. Judd-Ofelt itemization and influence of energy transfer on Sm3+ ions activated B2O3–ZnF2–SrO–SiO2 glasses for orange-red emitting devices. Journal of Luminescence. 2021; 229:117651. https://doi.org/10.1016/j.jlumin.2020.117651
Neethish MM, Acharyya JN, Prakash GV, Ravi Kanth Kumar V V. Effect of Zinc Fluoride addition on structure of barium Borate glasses for nonlinear optical applications. Optical Materials. 2021; 121:111626. https://doi.org/10.1016/j.optmat.2021.111626
Gunha JV, Muniz RF, Somer A, et al. The effect of fluorine replacement on the physical properties of oxyfluorotellurite glasses TeO2-Li2O-ZnO-ZnF2. Journal of Non-Crystalline Solids. 2023; 603:122083. https://doi.org/10.1016/j.jnoncrysol.2022.122083
Abd El-Moneim A. Effect of ZnF2 and WO3 on elastic properties of oxyfluoride tellurite ZnF2–WO3–TeO2glasses: Theoretical analysis. Chinese Journal of Physics. 2020; 65:412-423. https://doi.org/10.1016/j.cjph.2020.02.013
Nagaraju R, Sekhar KC, Shareefuddin M, Haritha L, Lalitha G, Kumar KV. Influence of ZnF2/PbF2 on physical and structural characteristics of bismuth borate glasses reinforced with chromium ions. Optik. 2021; 247:168028. https://doi.org/10.1016/j.ijleo.2021.168028
Zhang C, Zhang C, Yun C, Lai S. 3.1 μm mid-infrared luminescence in Er3+ doped ZnF2 modified aluminum fluoride glass. Journal of Rare Earths. 2023; 41(7):997-1003. https://doi.org/10.1016/j.jre.2022.09.021
Yuan J, Wang W, Ye Y, et al. Effect of BaF2 Variation on Spectroscopic Properties of Tm3+ Doped Gallium Tellurite Glasses for Efficient 2.0 μm Laser. Frontiers in Chemistry. 2021; 8:1-6. https://doi.org/10.3389/fchem.2020.628273
Aishwarya K, Vinitha G, Varma GS, Asokan S, Manikandan N. Synthesis and characterization of barium fluoride substituted zinc tellurite glasses. Physica B: Condensed Matter. 2017; 526:84-88. https://doi.org/10.1016/j.physb.2017.09.039
Kullberg ATG, Lopes AAS, Monteiro RCC. Effect of ZnF2 addition on the crystallization behaviour of a zinc borosilicate glass. Journal of Non-Crystalline Solids. 2017; 468(May):100-104. https://doi.org/10.1016/j.jnoncrysol.2017.04.030
Vahedigharehchopogh N, Kıbrıslı O, Ersundu AE, Çelikbilek Ersundu M. Color tunability and white light generation through up-conversion energy transfer in Yb3+ sensitized Ho3+/Tm3+ doped tellurite glasses. Journal of Non-Crystalline Solids. 2019; 525:119679. https://doi.org/10.1016/j.jnoncrysol.2019.119679
Ahmed AA, Mawlud SQ. Physical and optical properties of ternary lead-bismuth tellurite glass. Heliyon. 2023; 9(6):e16730. https://doi.org/10.1016/j.heliyon.2023.e16730
Alshamari A, Mhareb MHA, Alonizan N, et al. Gamma-ray-induced changes in the radiation shielding, structural, mechanical, and optical properties of borate, tellurite, and borotellurite glass systems modified with barium and bismuth oxide. Optik. 2023; 281:170829. https://doi.org/10.1016/j.ijleo.2023.170829
Baynton PL. Colour of tellurite glasses. Nature. 1955; 176(4484):691-692. https://doi.org/10.1038/176691b0
Yuliantini L, Djamal M, Hidayat R, Boonin K, Kaewkhao J, Yasaka P. Luminescence and Judd-Ofelt analysis of Nd3+ion doped oxyfluoride boro-tellurite glass for near-infrared laser application. Materials Today: Proceedings. 2018; 43:2655-2662. https://doi.org/10.1016/j.matpr.2020.04.631
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. 1976; 32(5):751-767. https://doi.org/10.1023/A:1018927109487
Shoaib M, Khan I, Iskakova K, et al. Investigation of luminescence properties of Ho3+ doped barium, zinc and gadolinium based phosphate glasses. Optik. 2022; 260:169046. https://doi.org/10.1016/j.ijleo.2022.169046
Kıbrıslı O, Ersundu AE, Ersundu MÇ. Dy 3+ doped tellurite glasses for solid-state lighting: An investigation through physical, thermal, structural and optical spectroscopy studies. Journal of Non-Crystalline Solids. 2019; 513:125-136. https://doi.org/10.1016/j.jnoncrysol.2019.03.020
Anigrahawati P, Sahar MR, Sazali ES. Physical, structural and spectroscopic analysis of tellurite glass containing natural magnetite Fe3O4 nanoparticles. Materials Chemistry and Physics. 2022; 286:126183. https://doi.org/10.1016/j.matchemphys.2022.126183
Shoaib M, Khan I, Chanthima N, et al. Photoluminescence analysis of Er3+-ions Doped P2O5-Gd2O3/GdF3-BaO-ZnO glass systems. Journal of Alloys and Compounds. 2022; 902:163766. https://doi.org/10.1016/j.jallcom.2022.163766
Lenkennavar SK, Eraiah B, Kokila MK. Rare earths doped oxy-fluoride glasses as candidates for generating tunable visible light. Materials Today: Proceedings. 2020; 33:2550-2554. https://doi.org/10.1016/j.matpr.2019.12.066
Azuraida A, Halimah MK, Sidek AA, et al. Comparative studies of bismuth and barium boro-tellurite glass system: Structural and optical properties. Chalcogenide Letters. 2015; 12(10):497-503.
Adamu SB, Halimah MK, Chan KT, Muhammad FD, Nazrin SN, Tafida RA. Eu3+ ions doped zinc borotellurite glass system for white light laser application: Structural, physical, optical properties, and Judd-Ofelt theory. Journal of Luminescence. 2022; 250:119099. https://doi.org/10.1016/j.jlumin.2022.119099
Kaur M, Singh A, Thakur V, Singh L. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses. Optical Materials. 2016; 53:181-189. https://doi.org/10.1016/j.optmat.2016.01.051
Ali AA, Shaaban MH. Optical and Electrical Properties of Nd3+ Doped TeBiY Borate Glasses. Silicon. 2018; 10(4):1503-1511. https://doi.org/10.1007/s12633-017-9633-y
Krishna VM, Mahamuda S, Rani PR, Swapna K, Venkateswarlu M, Rao AS. Effect of samarium ions concentration on physical, optical and photoluminescence properties of Oxy-Fluoro Boro Tellurite glasses. Optical Materials. 2020; 109:110368. https://doi.org/10.1016/j.optmat.2020.110368
Kaur R, Bhatia V, Kumar D, Rao SMD, Pal Singh S, Kumar A. Physical, structural, optical and thermoluminescence behavior of Dy2O3 doped sodium magnesium borosilicate glasses. Results in Physics. 2019; 12:827-839. https://doi.org/10.1016/j.rinp.2018.12.005
Lakshminarayana G, Vighnesh KR, Prabhu NS, et al. Dy3+: B2O3–Al2O3–ZnF2–NaF/LiF oxyfluoride glasses for cool white or day white light-emitting applications. Optical Materials. 2020; 108:110186. https://doi.org/10.1016/j.optmat.2020.110186
Narasimha Rao N, Naresh P, Raghava Rao P, Swamy BJRSN, Chitti Babu A. Physical and spectroscopic properties of PbO –ZnF2 – B2O3 glasses doped with CuO. Materials Today: Proceedings. 2023; 92:817-822. https://doi.org/10.1016/j.matpr.2023.04.382
Santiago de la Rosa A, Cortés-Hernández DA, Escorcia-García J, López-Herrera HU. White-light luminescence from Tm3+-doped borosilicate glass-ceramics synthesized by the sol-gel route. Ceramics International. 2023; 49(14):23985-23995. https://doi.org/10.1016/j.ceramint.2023.05.002
Sailaja P, Mahamuda S, Swapna K, Venkateswarlu M, Rao AS. Near-infrared photoluminescence studies of neodymium ions doped SrO-Al2O3-BaCl2-B2O3-TeO2 glasses for laser and fiber amplifier applications. Optics and Laser Technology. 2022; 156:108569. https://doi.org/10.1016/j.optlastec.2022.108569
Ren F, Song C, Cong Y, Wu Y, Bai Y, Zhou D. Near-infrared luminescence enhancement in Yb3+/Ho3+ co-doped bismuth-tellurite glass by tailoring glass network. Ceramics International. 2023; 49(20):32850-32859. https://doi.org/10.1016/j.ceramint.2023.07.257
Sharma A, Nazrin SN, Humaira SA, Boukhris I, Kebaili I. Impact of neodymium oxide on optical properties and X-ray shielding competence of Nd2O3–TeO2–ZnO glasses. Radiation Physics and Chemistry. 2022; 195:110047. https://doi.org/10.1016/j.radphyschem.2022.110047
Komal Poojha MK, Naseer KA, Matheswaran P, Marimuthu K, El Shiekh E. Effect of alkali/alkaline modifiers on Pr3+ ions doped lead boro-tellurite glasses for lasing material applications. Optical Materials. 2023; 143:114289. https://doi.org/10.1016/j.optmat.2023.114289
Singh J. Optical Properties of Condensed Matter and Applications - Wiley Series in Materials for Electronic - amp - Optoelectronic Applications. 2006.
Ding J, Li C, Xia L, Zhang Y, Li J, Zhou Y. A new Nd3+/Tm3+/Ho3+ tri-doped tellurite glass for multifunctional applications. Materials Research Bulletin. 2022; 150:111777. https://doi.org/10.1016/j.materresbull.2022.111777
Shoaib M, Rooh G, Rajaramakrishna R, et al. Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications. Journal of Rare Earths. 2019; 37(4):374-382. https://doi.org/10.1016/j.jre.2018.09.008
Monisha M, D’Souza AN, Hegde V, et al. Dy3+ doped SiO2–B2O3–Al2O3–NaF–ZnF2 glasses: An exploration of optical and gamma radiation shielding features. Current Applied Physics. 2020; 20(11):1207-1216. https://doi.org/10.1016/j.cap.2020.08.004
Sasirekha C, Vijayakumar M, Yousef ES, Marimuthu K. Luminescence performance of Dy3+ ions incorporated modifier reliant boro-tellurite glasses for white light applications. Optik. 2023; 289:171268. https://doi.org/10.1016/j.ijleo.2023.171268
Ahmadi F, Hussin R, Ghoshal SK. Judd-Ofelt intensity parameters of samarium-doped magnesium zinc sulfophosphate glass. Journal of Non-Crystalline Solids. 2016; 448:43-51. https://doi.org/10.1016/j.jnoncrysol.2016.06.040
Basavapoornima C, Maheswari T, Deviprasad CJ, Kesavulu CR, Tröster T, Jayasankar CK. Thermal, structural, mechanical and 1.8 μm luminescence properties of the thulium doped Pb-K-Al-Na glasses for optical fiber amplifiers. Journal of Non-Crystalline Solids. 2020; 530:119773. https://doi.org/10.1016/j.jnoncrysol.2019.119773
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Farah Asyiqa, A., Yusof, N., Iskandar, S., Hisam, R., Azlan, M., Zaid, M., Yusoff, A., & Nurulhuda, M.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.