Effect of substituting ZnO to ZnF₂ on Optical Properties of Nd³⁺/Tm³⁺ Doped Tungsten-Bismuth-Tellurite Glass

Authors

  • A.Z.N. Farah Asyiqa Universiti Sains Malaysia
  • N.N. Yusof Universiti Sains Malaysia
  • S.M. Iskandar Universiti Sains Malaysia
  • R. Hisam Universiti Teknologi MARA
  • M.N. Azlan Sultan Idris Education University
  • M.H.M. Zaid Universiti Putra Malaysia
  • A.H. Yusoff Universiti Malaysia Kelantan
  • M.Y. Nurulhuda Universiti Sultan Zainal Abidin

DOI:

https://doi.org/10.31643/2025/6445.34

Keywords:

Zinc fluoride, tellurite glass, neodymium, thulium, rare-earth

Abstract

Present research explores the impact of varying ZnO and ZnF2 concentrations in Nd3+/Tm3+ doped Tungsten-Bismuth-Tellurite glass for fiber optic and solid-state application. Glasses with formula 60.97TeO2–6.7WO3–3.3 Bi2O3–0.03Nd2O3–1TmO–(28-x)ZnO–xZnF2 where x = 0, 7, 14, 21, 28 mol% is prepared using melt-quenching technique. The absorption and photoluminescene of the glass is measured using a UV-Vis-NIR absorption and Photoluminescence spectrometer. About eight absorption bands are evidenced, centred around 467, 525, 581, 687, 726, 793, 870, 1211, and 1691 nm, corresponding to respective REIs (Nd3+ and Tm3+ ions) transitioning from the ground to their excited state. The absorbance of Tm3+ centred around 1691 nm improved with higher ZnF2 contents (28% mol). Physical parameters such as density, molar volume, molar refractivity, and electronic polarizability are calculated. Seven prominent luminescence peaks of Nd3+ and Tm3+ have been identified centred around 509, 586, 611, 626, 648, 795, 800, and 890 nm. Highest luminescence enhancement is evident at 800 nm which corresponds to glass contained ratio of ZnO/ZnF2 at 3:1. These findings highlight the role of ZnF2 in altering the luminescence properties of the glass for fiber optics and solid-state laser applications.

Downloads

Download data is not yet available.

Author Biographies

A.Z.N. Farah Asyiqa, Universiti Sains Malaysia

Master’s student at School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.  ORCID ID: https://orcid.org/0009-0008-5121-9308

N.N. Yusof, Universiti Sains Malaysia

Dr., School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.  ORCID ID: https://orcid.org/0000-0002-6303-4908

S.M. Iskandar, Universiti Sains Malaysia

Dr., School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. ORCID ID: https://orcid.org/0000-0003-3875-4943

R. Hisam, Universiti Teknologi MARA

Dr., Faculty of Applied Science, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia. ORCID ID: https://orcid.org/0000-0002-9183-4988 

M.N. Azlan, Sultan Idris Education University

Dr., Physics Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, 35900, Malaysia. ORCID ID: https://orcid.org/0000-0002-2792-4145

M.H.M. Zaid, Universiti Putra Malaysia

Dr. Physics Department, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia, ORCID ID: https://orcid.org/0000-0001-6734-800X

A.H. Yusoff, Universiti Malaysia Kelantan

Dr.,Universiti Malaysia Kelantan, 17600 Jeli; Dr., Gold, Rare Earth & Material Technopreneurship Centre (GREAT) Faculty of Bioengineering and Technology Universiti Malaysia Kelantan. Jeli Campus, 17600 Jeli, Kelantan, Malaysia. ORCID ID: https://orcid.org/0000-0003-0229-886X

M.Y. Nurulhuda, Universiti Sultan Zainal Abidin

UniSZA Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia. ORCID ID: https://orcid.org/0000-0001-8219-2920

References

Xia L, Zhang Y, Ding J, Li C, Shen X, Zhou Y. Er3+/Tm3+/Nd3+ tri-doping tellurite glass with ultra-wide NIR emission. Journal of Alloys and Compounds. 2021; 863:158626. https://doi.org/10.1016/j.jallcom.2021.158626

Hou G, Cao L, Zhang C, et al. Improvement of ultra-broadband near-infrared emission in Nd3+-Er3+-Pr3+ tri-doped tellurite glasses. Optical Materials. 2021; 111:110547. https://doi.org/10.1016/j.optmat.2020.110547

Kaniyarakkal S, Rajasekharaudayar KC, Dagupati R, et al. Down-/Up-conversion luminescence behaviors and energy transfer analysis in Tm3+ and Tm3+/Yb3+ co-doped tellurite glasses. Inorganic Chemistry Communications. 2023; 158(P1):111395. https://doi.org/10.1016/j.inoche.2023.111395

Elkhoshkhany N, Marzouk S, El–Sherbiny M, et al. Enhanced thermal stability and optical and structural properties of Tm+3 ions in doped tellurite glasses for photonic use. Results in Physics. 2021; 24:104202. https://doi.org/10.1016/j.rinp.2021.104202

Song X, Han K, Zhou D, Xu P, Xue X, Zhang P. ~2 μm emission properties and energy transfer processes in Tm3+ doped Bi2O3-GeO2-Na2O glass laser material. Journal of Luminescence. 2020; 224:117314. https://doi.org/10.1016/j.jlumin.2020.117314

Cao J, Xu P, Song C, et al. Realization of broadband ∼1.8 μm luminescence by level population inversion in Tm3+ doped tellurite glass for laser applications. Journal of Non-Crystalline Solids. 2023; 617:122445. https://doi.org/10.1016/j.jnoncrysol.2023.122445

Lakshminarayana G, Meza-Rocha AN, Soriano-Romero O, et al. Survey of optical and fluorescence traits of Tm3+-doped alkali/mixed alkali oxides constituting B2O3-BaO-ZnO-LiF glasses for 0.45 μm laser and 1.46 μm fiber amplifier. Results in Physics. 2021; 26:104343. https://doi.org/10.1016/j.rinp.2021.104343

Zhao D, Zhu L, Li C, Ding J, Li J, Zhou Y. Broadband near-infrared luminescence property in Nd3+/Tm3+ co-doped tellurite glass. Journal of Alloys and Compounds. 2023; 937:168384. https://doi.org/10.1016/j.jallcom.2022.168384

Djamal M, Yuliantini L, Hidayat R, et al. Spectroscopic study of Nd3+ ion-doped Zn-Al-Ba borate glasses for NIR emitting device applications. Optical Materials. 2020; 107:110018. https://doi.org/10.1016/j.optmat.2020.110018

Kumar A, Anu, Sahu MK, et al. Spectral characteristics of Tb3+ doped ZnF2–K2O–Al2O3–B2O3 glasses for epoxy free tricolor w-LEDs and visible green laser applications. Journal of Luminescence. 2022; 244:118676. https://doi.org/10.1016/j.jlumin.2021.118676

Siva Rama Krishna Reddy K, Swapna K, Mahamuda S, Venkateswarulu M, Rao AS. Structural, optical and photoluminescence properties of alkaline-earth boro tellurite glasses doped with trivalent Neodymium for 1.06 μm optoelectronic devices. Optical Materials. 2021; 111:110615. https://doi.org/10.1016/j.optmat.2020.110615

Feng S, Zhu J, Liu C, et al. The deactivation effects of Nd3+ ion for 2.85 μm laser in Ho3+/Nd3+ co-doped fluorotellurite glass. Journal of Luminescence. 2024; 266:120308. https://doi.org/10.1016/j.jlumin.2023.120308

Zhu L, Zhao D, Li C, Ding J, Li J, Zhou Y. Effect of Nb2O5 on the ∼2.0 μm band luminescence of Ho3+/Tm3+/Ce3+ tri-doped tellurite glass. Ceramics International. 2023; 49(18):30490-30500. https://doi.org/10.1016/j.ceramint.2023.06.313

Zhang C, Han K, Wu T, et al. TeO2-GeO2-BaF2-Tm2O3 glass for ∼2 μm laser materials: Analysis of luminescence features and energy transfer behavior. Ceramics International. 2022; 48(20):30546-30554. https://doi.org/10.1016/j.ceramint.2022.06.335

Li C, Zhang X, Onah VC, et al. Physical and optical properties of TeO2-WO3-GdF3 tellurite glass system. Ceramics International. 2022; 48(9):12497-12505. https://doi.org/10.1016/j.ceramint.2022.01.116

Biswas J, Jana S. Photoluminescence of Tb3+/Sm3+ ions co-activated in SrO - Na2O - WO3 - tellurite glasses for multicolor laser applications. Ceramics International. 2023; 49(15):24718-24729. https://doi.org/10.1016/j.ceramint.2023.04.215

Sayyed MI, D’Souza AN, Prabhu NS, Kamath SD. Comparing basic radiation attenuation factors of tellurite glasses containing PbCl2 and Bi2O3 with some other potential glass systems. Optik. 2022; 249:168247. https://doi.org/10.1016/j.ijleo.2021.168247

Prasad RNA, Venkata Siva B, Neeraja K, Krishna Mohan N, Rojas JI. Influence of modifier oxides on spectroscopic features of Nd2O3 doped PbO-Ro2O3–WO3–B2O3 glasses (with Ro2O3 = Sb2O3, Al2O3, and Bi2O3). Journal of Luminescence. 2020; 223:117171. https://doi.org/10.1016/j.jlumin.2020.117171

Gunha JV, Muniz RF, Somer A, et al. The effect of fluorine replacement on the physical properties of oxyfluorotellurite glasses TeO2-Li2O-ZnO-ZnF2. Journal of Non-Crystalline Solids. 2023; 603:122083. https://doi.org/10.1016/j.jnoncrysol.2022.122083

Rajesham S, Sekhar KC, Shareefuddin M, Kumar JS. Impact of MoO3 on physical and spectroscopic (optical, FTIR, Raman and EPR) studies of B2O3-CdO-Al2O3-ZnF2 glasses for optical and shielding applications. Optik. 2023; 272:170241. https://doi.org/10.1016/j.ijleo.2022.170241

Sanju, Ravina, Anu, et al. Physical, structural and optical characterization of Dy3+ doped ZnF2-WO2-B2O3-TeO2 glasses for opto-communication applications. Optical Materials. 2021; 114:110937. https://doi.org/10.1016/j.optmat.2021.110937

Kilic G, Issever UG, Ilik E. Synthesis, characterization and crystalline phase studies of TeO2–Ta2O5–ZnO/ZnF2 oxyfluoride semiconducting glasses. Journal of Non-Crystalline Solids. 2020; 527:119747. https://doi.org/10.1016/j.jnoncrysol.2019.119747

Ravina, Naveen, Sheetal, et al. Judd-Ofelt itemization and influence of energy transfer on Sm3+ ions activated B2O3–ZnF2–SrO–SiO2 glasses for orange-red emitting devices. Journal of Luminescence. 2021; 229:117651. https://doi.org/10.1016/j.jlumin.2020.117651

Neethish MM, Acharyya JN, Prakash GV, Ravi Kanth Kumar V V. Effect of Zinc Fluoride addition on structure of barium Borate glasses for nonlinear optical applications. Optical Materials. 2021; 121:111626. https://doi.org/10.1016/j.optmat.2021.111626

Gunha JV, Muniz RF, Somer A, et al. The effect of fluorine replacement on the physical properties of oxyfluorotellurite glasses TeO2-Li2O-ZnO-ZnF2. Journal of Non-Crystalline Solids. 2023; 603:122083. https://doi.org/10.1016/j.jnoncrysol.2022.122083

Abd El-Moneim A. Effect of ZnF2 and WO3 on elastic properties of oxyfluoride tellurite ZnF2–WO3–TeO2glasses: Theoretical analysis. Chinese Journal of Physics. 2020; 65:412-423. https://doi.org/10.1016/j.cjph.2020.02.013

Nagaraju R, Sekhar KC, Shareefuddin M, Haritha L, Lalitha G, Kumar KV. Influence of ZnF2/PbF2 on physical and structural characteristics of bismuth borate glasses reinforced with chromium ions. Optik. 2021; 247:168028. https://doi.org/10.1016/j.ijleo.2021.168028

Zhang C, Zhang C, Yun C, Lai S. 3.1 μm mid-infrared luminescence in Er3+ doped ZnF2 modified aluminum fluoride glass. Journal of Rare Earths. 2023; 41(7):997-1003. https://doi.org/10.1016/j.jre.2022.09.021

Yuan J, Wang W, Ye Y, et al. Effect of BaF2 Variation on Spectroscopic Properties of Tm3+ Doped Gallium Tellurite Glasses for Efficient 2.0 μm Laser. Frontiers in Chemistry. 2021; 8:1-6. https://doi.org/10.3389/fchem.2020.628273

Aishwarya K, Vinitha G, Varma GS, Asokan S, Manikandan N. Synthesis and characterization of barium fluoride substituted zinc tellurite glasses. Physica B: Condensed Matter. 2017; 526:84-88. https://doi.org/10.1016/j.physb.2017.09.039

Kullberg ATG, Lopes AAS, Monteiro RCC. Effect of ZnF2 addition on the crystallization behaviour of a zinc borosilicate glass. Journal of Non-Crystalline Solids. 2017; 468(May):100-104. https://doi.org/10.1016/j.jnoncrysol.2017.04.030

Vahedigharehchopogh N, Kıbrıslı O, Ersundu AE, Çelikbilek Ersundu M. Color tunability and white light generation through up-conversion energy transfer in Yb3+ sensitized Ho3+/Tm3+ doped tellurite glasses. Journal of Non-Crystalline Solids. 2019; 525:119679. https://doi.org/10.1016/j.jnoncrysol.2019.119679

Ahmed AA, Mawlud SQ. Physical and optical properties of ternary lead-bismuth tellurite glass. Heliyon. 2023; 9(6):e16730. https://doi.org/10.1016/j.heliyon.2023.e16730

Alshamari A, Mhareb MHA, Alonizan N, et al. Gamma-ray-induced changes in the radiation shielding, structural, mechanical, and optical properties of borate, tellurite, and borotellurite glass systems modified with barium and bismuth oxide. Optik. 2023; 281:170829. https://doi.org/10.1016/j.ijleo.2023.170829

Baynton PL. Colour of tellurite glasses. Nature. 1955; 176(4484):691-692. https://doi.org/10.1038/176691b0

Yuliantini L, Djamal M, Hidayat R, Boonin K, Kaewkhao J, Yasaka P. Luminescence and Judd-Ofelt analysis of Nd3+ion doped oxyfluoride boro-tellurite glass for near-infrared laser application. Materials Today: Proceedings. 2018; 43:2655-2662. https://doi.org/10.1016/j.matpr.2020.04.631

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. 1976; 32(5):751-767. https://doi.org/10.1023/A:1018927109487

Shoaib M, Khan I, Iskakova K, et al. Investigation of luminescence properties of Ho3+ doped barium, zinc and gadolinium based phosphate glasses. Optik. 2022; 260:169046. https://doi.org/10.1016/j.ijleo.2022.169046

Kıbrıslı O, Ersundu AE, Ersundu MÇ. Dy 3+ doped tellurite glasses for solid-state lighting: An investigation through physical, thermal, structural and optical spectroscopy studies. Journal of Non-Crystalline Solids. 2019; 513:125-136. https://doi.org/10.1016/j.jnoncrysol.2019.03.020

Anigrahawati P, Sahar MR, Sazali ES. Physical, structural and spectroscopic analysis of tellurite glass containing natural magnetite Fe3O4 nanoparticles. Materials Chemistry and Physics. 2022; 286:126183. https://doi.org/10.1016/j.matchemphys.2022.126183

Shoaib M, Khan I, Chanthima N, et al. Photoluminescence analysis of Er3+-ions Doped P2O5-Gd2O3/GdF3-BaO-ZnO glass systems. Journal of Alloys and Compounds. 2022; 902:163766. https://doi.org/10.1016/j.jallcom.2022.163766

Lenkennavar SK, Eraiah B, Kokila MK. Rare earths doped oxy-fluoride glasses as candidates for generating tunable visible light. Materials Today: Proceedings. 2020; 33:2550-2554. https://doi.org/10.1016/j.matpr.2019.12.066

Azuraida A, Halimah MK, Sidek AA, et al. Comparative studies of bismuth and barium boro-tellurite glass system: Structural and optical properties. Chalcogenide Letters. 2015; 12(10):497-503.

Adamu SB, Halimah MK, Chan KT, Muhammad FD, Nazrin SN, Tafida RA. Eu3+ ions doped zinc borotellurite glass system for white light laser application: Structural, physical, optical properties, and Judd-Ofelt theory. Journal of Luminescence. 2022; 250:119099. https://doi.org/10.1016/j.jlumin.2022.119099

Kaur M, Singh A, Thakur V, Singh L. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses. Optical Materials. 2016; 53:181-189. https://doi.org/10.1016/j.optmat.2016.01.051

Ali AA, Shaaban MH. Optical and Electrical Properties of Nd3+ Doped TeBiY Borate Glasses. Silicon. 2018; 10(4):1503-1511. https://doi.org/10.1007/s12633-017-9633-y

Krishna VM, Mahamuda S, Rani PR, Swapna K, Venkateswarlu M, Rao AS. Effect of samarium ions concentration on physical, optical and photoluminescence properties of Oxy-Fluoro Boro Tellurite glasses. Optical Materials. 2020; 109:110368. https://doi.org/10.1016/j.optmat.2020.110368

Kaur R, Bhatia V, Kumar D, Rao SMD, Pal Singh S, Kumar A. Physical, structural, optical and thermoluminescence behavior of Dy2O3 doped sodium magnesium borosilicate glasses. Results in Physics. 2019; 12:827-839. https://doi.org/10.1016/j.rinp.2018.12.005

Lakshminarayana G, Vighnesh KR, Prabhu NS, et al. Dy3+: B2O3–Al2O3–ZnF2–NaF/LiF oxyfluoride glasses for cool white or day white light-emitting applications. Optical Materials. 2020; 108:110186. https://doi.org/10.1016/j.optmat.2020.110186

Narasimha Rao N, Naresh P, Raghava Rao P, Swamy BJRSN, Chitti Babu A. Physical and spectroscopic properties of PbO –ZnF2 – B2O3 glasses doped with CuO. Materials Today: Proceedings. 2023; 92:817-822. https://doi.org/10.1016/j.matpr.2023.04.382

Santiago de la Rosa A, Cortés-Hernández DA, Escorcia-García J, López-Herrera HU. White-light luminescence from Tm3+-doped borosilicate glass-ceramics synthesized by the sol-gel route. Ceramics International. 2023; 49(14):23985-23995. https://doi.org/10.1016/j.ceramint.2023.05.002

Sailaja P, Mahamuda S, Swapna K, Venkateswarlu M, Rao AS. Near-infrared photoluminescence studies of neodymium ions doped SrO-Al2O3-BaCl2-B2O3-TeO2 glasses for laser and fiber amplifier applications. Optics and Laser Technology. 2022; 156:108569. https://doi.org/10.1016/j.optlastec.2022.108569

Ren F, Song C, Cong Y, Wu Y, Bai Y, Zhou D. Near-infrared luminescence enhancement in Yb3+/Ho3+ co-doped bismuth-tellurite glass by tailoring glass network. Ceramics International. 2023; 49(20):32850-32859. https://doi.org/10.1016/j.ceramint.2023.07.257

Sharma A, Nazrin SN, Humaira SA, Boukhris I, Kebaili I. Impact of neodymium oxide on optical properties and X-ray shielding competence of Nd2O3–TeO2–ZnO glasses. Radiation Physics and Chemistry. 2022; 195:110047. https://doi.org/10.1016/j.radphyschem.2022.110047

Komal Poojha MK, Naseer KA, Matheswaran P, Marimuthu K, El Shiekh E. Effect of alkali/alkaline modifiers on Pr3+ ions doped lead boro-tellurite glasses for lasing material applications. Optical Materials. 2023; 143:114289. https://doi.org/10.1016/j.optmat.2023.114289

Singh J. Optical Properties of Condensed Matter and Applications - Wiley Series in Materials for Electronic - amp - Optoelectronic Applications. 2006.

Ding J, Li C, Xia L, Zhang Y, Li J, Zhou Y. A new Nd3+/Tm3+/Ho3+ tri-doped tellurite glass for multifunctional applications. Materials Research Bulletin. 2022; 150:111777. https://doi.org/10.1016/j.materresbull.2022.111777

Shoaib M, Rooh G, Rajaramakrishna R, et al. Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications. Journal of Rare Earths. 2019; 37(4):374-382. https://doi.org/10.1016/j.jre.2018.09.008

Monisha M, D’Souza AN, Hegde V, et al. Dy3+ doped SiO2–B2O3–Al2O3–NaF–ZnF2 glasses: An exploration of optical and gamma radiation shielding features. Current Applied Physics. 2020; 20(11):1207-1216. https://doi.org/10.1016/j.cap.2020.08.004

Sasirekha C, Vijayakumar M, Yousef ES, Marimuthu K. Luminescence performance of Dy3+ ions incorporated modifier reliant boro-tellurite glasses for white light applications. Optik. 2023; 289:171268. https://doi.org/10.1016/j.ijleo.2023.171268

Ahmadi F, Hussin R, Ghoshal SK. Judd-Ofelt intensity parameters of samarium-doped magnesium zinc sulfophosphate glass. Journal of Non-Crystalline Solids. 2016; 448:43-51. https://doi.org/10.1016/j.jnoncrysol.2016.06.040

Basavapoornima C, Maheswari T, Deviprasad CJ, Kesavulu CR, Tröster T, Jayasankar CK. Thermal, structural, mechanical and 1.8 μm luminescence properties of the thulium doped Pb-K-Al-Na glasses for optical fiber amplifiers. Journal of Non-Crystalline Solids. 2020; 530:119773. https://doi.org/10.1016/j.jnoncrysol.2019.119773

Downloads

Published

2024-08-29

How to Cite

Farah Asyiqa, A., Yusof, N., Iskandar, S., Hisam, R., Azlan, M., Zaid, M., Yusoff, A., & Nurulhuda, M. (2024). Effect of substituting ZnO to ZnF₂ on Optical Properties of Nd³⁺/Tm³⁺ Doped Tungsten-Bismuth-Tellurite Glass. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 335(4), 5–17. https://doi.org/10.31643/2025/6445.34

Issue

Section

Engineering and technology

Most read articles by the same author(s)