Innovative approaches to the processing of vanadium- and molybdenum-containing technogenic waste
DOI:
https://doi.org/10.31643/2027/6445.10Keywords:
vanadium, molybdenum, ash and slag wastes, metallurgical slags, filtrate, hydrometallurgical methods, pyrometallurgical methods, bacterial leaching.Abstract
This article explores the consumption trends of vanadium and molybdenum across various industrial sectors, highlighting their strategic importance and the growing demand for a sustainable supply of raw materials. It analyses the sources of these elements of both natural and technogenic origin, including metallurgical slags, ashes, spent catalysts, and other industrial waste products. Particular attention is given to the environmental risks associated with the accumulation of vanadium and molybdenum compounds, which can have toxic effects on the environment. The study emphasises the need to incorporate secondary resources into industrial circulation to ensure the rational use of the mineral resource base and improve the efficiency of metal extraction from primary raw materials. A review is provided of existing chemical and hydrometallurgical methods for extracting vanadium and molybdenum, taking into account the composition of the processed material, technological conditions, and the limitations of specific approaches. The article underscores the potential of integrated waste processing, which enables the recovery of multiple valuable components and supports the transition to a circular economy.
Downloads
References
Ashraf B, Mohamed M El-SS, Mohamed M. Zaky A, Saeed H, Sami G, Eskander H Recovery of vanadium and nickel from heavy oil fly ash (HOFA): a critical review. RSC Advances. 2023; 13:6327-6341.
Nertil X, Francesco F Extraction and Recovery of Metals from Spent HDS Catalysts: Lab- and Pilot-Scale Results of the Overall Process. 2023; 13(7):1254.
Xu W, Hou X Q, Shi Y, Z Zhang W, Gu Y F, Feng CG, Volodymyr K. Correlation between the microstructure and corrosion behaviour of copper/316 L stainless-steel dissimilar-metal welded joints. Corrosion Science. 2021; 191:109729. https://doi.org/10.1016/j.corsci.2021.109729 .
Dikanbayeva К, Auyeshov AP, Satayev MS, Arynov KT, Yeskibayeva ChZ. Researching of sulfuric acid leaching of magnesium from serpentines. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2021; 5(449):32-38. https://doi.org/10.32014/2021.2518-170X.95
Chepushtanova TA, Merkibayev YS, Mamyrbayeva KK, Sarsenbekov T, & Mishra B. Mechanism and technological results of sulfidation roasting of oxidized lead compounds. Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex use of mineral resources. 2025; 332(1):119-132.
Silin KM Hahn, Gursel D, Kremer D, Gronen L, Stopic S, Friedrich B, Wotruba H. Mineral processing and metallurgical treatment of lead vanadate ores. Minerals. 2020; 10(2):197. https://doi.org/10.3390/min10020197.
Mamyrbayeva KK, Kuandykova AN, Chepushtanova TA, Merkibayev YS. Review of technology for hydrometallurgical processing of lateritic nickel ores over the past 20 years in the world. Non-Ferr. Met. 2024; 13–21.
Vohidov BR, Kaiumov OA. Issledovanie Sposoba Izvlechenia Vanadia Iz Tehnogennyh Othodov (Ovk-Otrabotannyi Vanadievyi Katalizator) [Research of the method for extraction of vanadium from technogenic waste (HVAC-Spent vanadium catalyst)]. Universum: tehnicheskie nauki:elektron. nauchn. jurn. [Universum: technical sciences: elektron. scientific. Journal]. 2023; 10(115). (in Russ.). https://7universum.com/ru/tech/archive/item/16140
Churilov AE, Mukaev EG, Gorbunova AV. Vanadisoderjaşie resursy i himicheskie sposoby ih pererabotki [Vanadium-containing resources and chemical methods of their processing]. Obşie voprosy metalurgii [General issues of metallurgy]. 2017; 3(22):30-33. (in Russ.).
Volkov Aİ, Stulov PE, Kologrieva UA. . İssledovanie tehnologicheskih svoistv i vozmojnostei pererabotki razlichnyh vidov vanadievogo syrä v Rosii [Research of technological properties and possibilities of processing of various types of vanadium raw materials in Russia]. Metallurgist [Metalurg]. 2024; 67:1379-1395. (in Russ.). https://doi.org/10.1007/s11015-024-01630-8
Chepushtanova TA, Merkibayev YS, Mishra B, & Kuldeyev YI. Processing of the zinc-lead-bearing flotation middlings by sulfidizing roasting with pyrrhotites production by predicted properties. Non-Ferr. Met. 2022; 2:15-24.
Makhotkina E.S., Shubina M.V. İzvlechenie vanadia iz şlaka prosesa ITMK3 [Extraction of vanadium from the slag of the ITMK3 process]. Aktuälnye problemy sovremennoi nauki, tehniki i obrazovania. Magnitogorsk: İzd-vo Magnitogorsk. gos. tehn. un-ta im. G.İ. Nosova [Actual problems of modern science, technology and education. Magnitogorsk: Publishing House of Magnitogorsk State Technical University. G.I. Nosov University]. 2013; 1: 168-171. (in Russ.).
Liuyi R, Zhang Z, Zeng W, et al. Adhesion between nanobubbles and fine cassiterite particles. Intern J Mining Sci Technol. 2023; 33(4):503–509. doi:10.1016/j.ijmst.2022.09.
Srivastava RR, Ilyas N, Chaerun SK. et al. Biological recycling of critical metals from spent hydrodesulfurization catalysts: a review. Environ Chem Lett. 2025. https://doi.org/10.1007/s10311-025-01849-0
Chepushtanova TA, Yessirkigenov MI, Mamyrbayeva KK, Merkibayev ES, & Nikolosky A. Testing of the optimum extragent for solvent-extraction of Almaly deposit copper. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2022; 323(4):77-83.
Peng H. A literature review on leaching and recovery of vanadium. J. Environ. Chem. Eng. 2019; 7:103313. https://doi.org/10.1016/j.jece.2019.103313
Gao F, Olayiwola AU, Liu B, et al. Review of Vanadium Production Part I: Primary Resources. Miner. Process. Extr. Metall. Rev. 2021; 42(3):466-488. https://doi.org/10.1080/08827508.2021.1883013
Liu Y, Huang W, & Jiang T. Recovery of Valuable Elements from Molten Vanadium Slag Through High-Temperature Reduction. JOM. 2024; 76:4643-4652. https://doi.org/10.1007/s11837-024-06602-6
Luo M, Xiang J, Huang Q, Zhang S, Liu Z. Recovery of Vanadium from Vanadium Slag by Roasting with CaO-MgO Composite Additive. In: Ouchi, T., et al. Rare Metal Technology 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-22761-5_28
Ilyas S, Srivastava RR, Kim H, Cheema HA, Bhatti IA. Hydrometallurgical Extraction of Molybdenum and Rhenium from Molybdenite Flue Dust. In: Ouchi T, et al. Rare Metal Technology 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-22761-5_16
Karimova L, Kairalapov Ye, Tussupbekova T, Oleinikova T, Makasheva G. Hydrometallurgical Processing Of Molybdenum Middlings From Shatyrkul-Zhaysan Cluster Ore. J. Min. Metall. Sect. B-Metall. 2024; 60(1):71-83.
Xu YW, Hou XQ, Shi Y, Zhang WZ, Gu YF, Feng CG, Volodymyr K. Correlation between the microstructure and corrosion behaviour of copper/316 L stainless-steel dissimilar-metal welded joints, Corrosion Science. 2021; 191:109729. https://doi.org/10.1016/j.corsci.2021.109729
Agapitov YE, Karimova LM, Khazhimukhametov TA, Meshkov EY, Bobyrenko NA. Development of a scheme for hydrometallurgical processing of high-sulphur copper sulphide concentrates, Scientific and Technical Bulletin of the Volga Region. 2019; 7:32-36.
Rogozhnikov DA, Zakharyan SV, Dizer OA, Karimov KA. Nitric acid leaching of the copper-bearing arsenic sulphide concentrate of Akzhal, Tsvetnye Metally. 2020; 8. https://doi.org/10.17580/tsm.2020.08.02
Retnawati H. Learning Trajectory of Item Response Theory Course Using Multiple Softwares. Olympiads In Informatics. 2017; 11(1):123-142. https://doi.org/10.15388/ioi.2017.10
Lu Jun, Wang Shuize, Yu Hao, Wu Guilin, Gao Junheng, Wu Honghui, Zhao Haitao, Zhang Chaolei, Mao Xinping. Structure-property relationship in vanadium micro-alloyed TRIP steel subjected to the isothermal bainite transformation process. MSEA. 2023; 878:145208. https://doi.org/10.1016/j.msea.2023.145208
Yulusov S, Sarsembayeva M, Surkova T, Yerik M, & Dronenko A. On the question of extracting valuable components from spent catalyst. Canadian Metallurgical Quarterly. 2025, 1-11.
Kenzhaliyev BK, Surkovа TY, Azlan MN, Yulusov SB, Sukurov BM, & Yessimova DM. Black shale ore of Big Karatau is a raw material source of rare and rare earth elements. Hydrometallurgy. 2021; 205:105733.
Yulusov S, Sarsembayeva M, Surkova T, Yerik M, & Dronenko A. On the question of extracting valuable components from spent catalyst. Canadian Metallurgical Quarterly. 2025, 1-11.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 S.B. Yulusov, M.R. Sarsembayeva, A.T. Khabiyev, H. Retnawati, Y.S. Merkibayev, M.S. Akbarov, T.Y. Baltabay

This work is licensed under a Creative Commons Attribution 4.0 International License.