Lithium extraction methods and its application prospects: a review
DOI:
https://doi.org/10.31643/2026/6445.21Keywords:
lithium outlook, lithium minerals, demand and use, lithium resources, key technologies.Abstract
Lithium is the most important raw material for the production of modern electronics and electric vehicles. Today, it is impossible to imagine any mobile device without lithium batteries. The role of lithium in the global economy is only growing. The production of electric vehicles and batteries contributes to the reduction of carbon dioxide emissions. Nevertheless, end-of-life lithium-ion batteries pose a danger to the ecosystem. The article presents technological developments in the field of lithium extraction. The main sources of lithium are pegmatites, continental and geothermal brines, as well as clays, seawater and industrial brines. The main commercial lithium product is lithium carbonate (Li2CO3), which is obtained mainly from the mining, extraction and processing of spodumene ores and saltlake, oilfield brines. The effective role of lithium in addressing important issues such as pollution, climate change and the increasing depletion of natural resources used to produce lithium-ion batteries for these electric vehicles is also discussed.
Downloads
References
Talens PL, Villalba MG, Ayres, RU. Lithium: Sources, Production, Uses, and Recovery Outlook. JOM. 2013; 65:986-996. https://doi.org/10.1007/s11837-013-0666-4
Garrett DE: Handbook of Lithium and Natural Calcium Chloride. Elsevier Science. 2004
Ulrichsen A, Hampsey E, Taylor RH, Gadelrab R, Strawbridge R, Young AH. Comparing measurements of lithium treatment efficacy in people with bipolar disorder: systematic review and meta-analysis. BJPsych Open. 2023; 9(3):98. https://doi.org/10.1192/bjo.2023.64
U.S. Geological Survey, 2021, Mineral commodity summaries 2021: U.S. Geological Surveyhttps://doi.org/10.3133/mcs2021, 2021. (Аccess date: 06.08.2024)
U.S. Geological Survey, 2022, Mineral commodity summaries 2022: U.S. Geological Survey. https://doi.org/10.3133/mcs2022, 2022. (Аccess date: 06.08.2024).
U.S. Geological Survey, 2023, Mineral commodity summaries 2023: U.S. Geological Survey, https://doi.org/10.3133/mcs2023, 2023. (accessed on 07 August 2024).
U.S. Geological Survey, 2024, Mineral commodity summaries 2024: U.S. Geological Survey, https://doi.org/10.3133/mcs2024, 2024 (accessed on 07 August 2024).
U.S. Geological Survey, 2025, Mineral commodity summaries 2025: U.S. Geological Survey, https://doi.org/10.3133/mcs2025, 2025 (accessed on 05 March 2025).
History of Lithium-Ion Battery. https://suvastika.com/history-of-lithium-ion-battery/#:~:text=Sony%20and%20Asahi%20Kasei%20introduced,a%20breakthrough%20in%20battery%20technology, (accessed on 10 September 2024)
Yoshio N. Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources. 2001; 100(1–2):101-106. https://doi.org/10.1016/S0378-7753(01)00887-4
Amato A, Becci A, Villen-Guzman M, Vereda-Alonso C, Beolchini F. Challenges for sustainable lithium supply: A critical review. Journal of Cleaner Production. 2021; 300:126954. https://doi.org/10.1016/j.jclepro.2021.126954
Ambrose H, Kendall A. Understanding the future of lithium: Part 1, resource model. J Ind Ecol. 2020; 24:80–89. https://doi.org/10.1111/jiec.12949
The National Energy Report Kazenergy 2023. Kazakhstan Association of Oil, Gaz and Energy Sector Organizations, Kazenergy. https://www.kazenergy.com/en/operation/ned/2177/, 2023 (accessed on 21 August 2024).
Friedlingstein P, et al. Global Carbon Budget 2022. Earth System Science Data. 2022; 14(11):4811-4900. https://doi.org/10.5194/essd-14-4811-2022
Singer, M. Is Pollution the Primary Driver of Infectious Syndemics? Pathogens. 2024; 13:370. https://doi.org/10.3390/pathogens13050370
Chen Z, Liu N, Tang H, et al. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. Indoor Air. 2022; 32:13170. https://doi.org/10.1111/ina.13170
Syrek-Gerstenkorn Z, Syrek-Gerstenkorn B, Paul S. A Comparative Study of SOx, NOx, PM2.5 and PM10 in the UK and Poland from 1970 to 2020. Appl.Sci. 2024; 14:3292. https://doi.org/10.3390/app14083292
Warren CE, Campbell KM, Kirkham MN, Saito ER, Remund NP, Cayabyab KB, Kim IJ, Heimuli MS, Reynolds PR, Arroyo JA, et al. The Effect of Diesel Exhaust Particles on Adipose Tissue Mitochondrial Function and Inflammatory Status. Int. J. Mol. Sci. 2024; 25:4322. https://doi.org/10.3390/ijms25084322
Irei S, Chan TW. Sources, Processing, Transport, Health and Climate Impacts of Air Pollutants. Appl. Sci. 2024; 14:1361. https://doi.org/10.3390/app14041361
Cel 13: Prinyatie srochnyh mer po borbe s izmeneniem klimata i ego posledstviyami [Goal 13: Take urgent action to combat climate change and its impacts]. (in Russ.). (Electron resource). (Аccess date: 25.07.2024). URL: https://www.un.org/sustainabledevelopment/ru/climate-change/
Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical review of health impacts of wildfire smoke exposure. Environmental health perspectives. 2016; 124(9):1334-1343.
The United Nations Framework Convention On Climate Change. https://unfccc.int/process-and-meetings/what-is-the-united-nations-framework-convention-on-climate-change. (Аccessed date: 25.04.2024).
Balaram V, Santosh M, Satyanarayanan M, Srinivas N, Harish G. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geoscience Frontiers. 2024; 15(5):101868.
Victoria F, Celso FB, Claudia IG. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of The Total Environment. 2018; 639:1188-1204 https://doi.org/10.1016/j.scitotenv.2018.05.223
Pankaj KC, Min-seuk K, Rajiv R. S, Jae-chun L, Jin-Young L. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources, Minerals Engineering. 2016; 89:119-137. https://doi.org/10.1016/j.mineng.2016.01.010
Ostroushko YuI, Buchihin PI, Alekseeva VV, Nabojshikova TF, Kovda GA, Shelkova SA, Alekseeva RN, Makoveckaya MN. Litij, ego himiya i tehnologiya [Lithium, its chemistry and technology]. Moskva:Atomizdat. 1960. (in Russ.).
Kremeneckij AA, Linde TP, Yushko NA, Shaderman FI. Mineralnoe syre [Mineral raw materials]. Litij [Lithium]. M: Geoinformmark. 1999, 49. (in Russ.).
Tokaev zayavil o bolshih zapasah litiya v nedrah Kazahstana [Tokayev said there are large reserves of lithium in Kazakhstan's subsoil]. 2022. (Аccess date: 20.10.2022). URL: https://tengrinews.kz/kazakhstan_news/tokaev-zayavil-o-bolshih-zapasah-litiya-v-nedrah-kazahstana-480934/
Litij (Li) v Respublike Kazahstan [Lithium (Li) Republic of Kazakhstan]. (Аccess date: 17.07.2024). URL: http://kazspecgeo.com/article/litij.html
Bondarenko SS, Lubenskij LA, Kulikov GV. Geologo – ekonomicheskaya ocenka mestorozhdenij podzemnyh promyshlennyh vod [Geological and economic assessment of underground industrial water deposits]. Moskva: Nedra. 1988, 203. (in Russ.).
Ibragimov DS, Gavrilyuk MG, Kalabugin LA. Geologicheskie aspekty formirovaniya promyshlennyh rassolov [Geological aspects of formation of industrial brines]. Tashkent: Fan. 1990, 136. (in Russ.).
Romina LLS, Stefano S. Brine grades in Andean salars: When basin size matters A review of the Lithium Triangle. Earth-Science Reviews. 2021; 217:103615. https://doi.org/10.1016/j.earscirev.2021.103615
Stephen EK, Paul WG, Pablo AM, Gregory AK, Mark PE, Timothy JW. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews. 2012; 48:55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006
Tyumenov SD. Vodnye resursy i vodoobespechennost territorii Kazahstana [Water resources and water availability in Kazakhstan]. Almaty: KazNTU. 2008, 267. (in Russ.).
Kolesnikova MA, Krejn OE. Metallurgiya rasseyanyh i redkih metallov [Metallurgy of scattered and rare metals]. M: Metallurgiya. 1977, 360. (in Russ.).
Yelatontsev D, Mukhachev A. Processing of lithium ores: Industrial technologies and case studies – A review. Hydrometallurgy. 2021; 201:105578. https://doi.org/10.1016/j.hydromet.2021.105578
Salakjani NKh, Singh P, Nikoloski AN. Production of Lithium – A Literature Review Part 1: Pretreatment of Spodumene. Mineral Processing and Extractive Metallurgy Review. 2019; 41(5):335-348. https://doi.org/10.1080/08827508.2019.1643343
Dessemond C, Lajoie-Leroux F, Soucy G, Laroche N, Magnan J-F. Spodumene: The Lithium Market, Resources and Processes. Minerals. 2019; 9(6):334. https://doi.org/10.3390/min9060334
Yuqing Zh, Baozhong M, Yingwei L, Chengyan W, Yongqiang Ch. An effective method for directly extracting lithium from α-spodumene by activated roasting and sulfuric acid leaching. Journal of Industrial and Engineering Chemistry. 2023; 122:540-550.
Liu Y, Ma B, Lü Y, et al. A review of lithium extraction from natural resources. Int J Miner Metall Mater. 2023; 209-224. https://doi.org/10.1007/s12613-022-2544-y
Rioyo J, Tuset S, Grau R. Lithium Extraction from Spodumene by the Traditional Sulfuric Acid Process: A Review. Mineral Processing and Extractive Metallurgy Review. 2020; 43(1):97-106. https://doi.org/10.1080/08827508.2020.1798234
Belyaev AI. Metallurgiya legkih metallov [Metallurgy of light metals]. M: Metallurgiya. 1970, 368. (in Russ.).
Fosu AY, Kanari N, Vaughan J, Chagnes A. Literature Review and Thermodynamic Modelling of Roasting Processes for Lithium Extraction from Spodumene. Metals. 2020; 10:1312. https://doi.org/10.3390/met10101312
Plyushev VE, Stepin BD. Himiya i tehnologiya soedinenij litiya, rubidiya i ceziya [Chemistry and technology of lithium, rubidium and caesium compounds]. M:Himiya. 1970, 408. (in Russ.).
Qunxuan Y, Xinhai L, Zhixing W, Xifei W, Jiexi W, Huajun G, Qiyang H, Wenjie P. Extraction of lithium from lepidolite by sulfation roasting and water leaching. International Journal of Mineral Processing. 2012; 110-111:1-5. https://doi.org/10.1016/j.minpro.2012.03.005
Tian-ming G, Na F, Wu Ch, Tao D. Lithium extraction from hard rock lithium ores (spodumene, lepidolite, zinnwaldite, petalite): Technology, resources, environment and cost. China Geology. 2023; 6:137-153.
Barbosa LI, Valente G, Orosco RP, González JA. Lithium extraction from β-spodumene through chlorination with chlorine gas. Minerals Engineering. 2014; 56:29-34. https://doi.org/10.1016/j.mineng.2013.10.026
Kurkov AV, Anufrieva SI, Lihnikevich EG, Rogozhin AA. Kompleks sovremennyh tehnologicheskih reshenij pererabotki spodumenovyh rud [Complex of modern technological solutions for processing of spodumene ores]. Razvedka i ohrana nedr [Subsoil exploration and protection]. 2018; 9:44-52. (in Russ.).
Ge K, Yu L, Huan L, Shengzhou X, Fujie L, Hui G. Extraction of lithium from β-spodumene using sodium sulfate solution. Hydrometallurgy. 2018; 177:49-56. https://doi.org/10.1016/j.hydromet.2018.02.015
Rosales GD, Ruiz MC, Rodriguez MH. Study of the Extraction Kinetics of Lithium by Leaching β-Spodumene with Hydrofluoric Acid. Minerals. 2016; 6:98. https://doi.org/10.3390/min6040098
Meng F, McNeice J, Zadeh SS, Ghahreman A. Review of Lihium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries. Mineral Processing and Extractive Metallurgy Review. 2021; 42(2):123-141. https://doi.org/10.1080/08827508.2019.1668387
Gangqiang Y, Xinhe Zh, Tobias H, Biaohua Ch, Christoph H. Highly efficient lithium extraction from magnesium-rich brines with ionic liquid-based collaborative extractants: Thermodynamics and molecular insights. Chemical Engineering Science. 2024; 286:119682. https://doi.org/10.1016/j.ces.2023.119682
Sun J, Liang D, Meng X, Li Z. Recent Advances in Lithium Extraction Using Electrode Materials of Li-Ion Battery from Brine/Seawater. Processes. 2022; 10:2654. https://doi.org/10.3390/pr10122654
Lithium Mining Is Leaving Chile’s Indigenous Communities High and Dry (Literally). https://www.nrdc.org/stories/lithium-mining-leaving-chiles-indigenous-communities-high-and-dry-literally. 2022. (accessed on 30 August 2024).
Kalmykov D, Makaev S, Golubev G, Eremeev I, Vasilevsky V, Song J, He T, Volkov A. Operation of Three-Stage Process of Lithium Recovery from Geothermal Brine: Simulation. Membranes. 2021; 11:175.
Xianhui Li, Yinghui Mo, Weihua Q, Senlin Sh, Chuyang YТ, Jianxin Li. Membrane-based technologies for lithium recovery from water lithium resources: A review. Journal of Membrane Science. 2019; 591(10):117317. https://doi.org/10.1016/j.memsci.2019.117317
Tong Zh, Wenjia Zh, Qiaoying W, Zhichao W, Zhiwei W. Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine: A comprehensive review. Desalination. 2023; 546:116205. https://doi.org/10.1016/j.desal.2022.116205
Hui S, Zheng L, Jian Zh, Zhaowu Zh, Lina W, Tao Q. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507. Hydrometallurgy. 2020; 197:105487. https://doi.org/10.1016/j.hydromet.2020.105487
Trоcoli R, Erinmwingbovo C, La Mantia F. Optimized Lithium Recovery from Brines by using an Electrochemical Ion-Pumping Process Based on λ-MnO2 and Nickel Hexacyanoferrateю ChemElectroChem. 2017; 4:143.
Romero VCE, Tagliazucchi M, Flexer V, Calvo EJ. Sustainable Electrochemical Extraction of Lithium from Natural Brine for Renewable Energy Storage. Journal of The Electrochemical Society. 2018; 165. https://iopscience.iop.org/article/10.1149/2.0741810jes
Hefeng Y, Muzi L, Li C, Lijuan W, Fangqin Ch. Electrochemical extraction technologies of lithium: Development and challenges. Desalination. 2025; 598. https://doi.org/10.1016/j.desal.2024.118419
Pratima M, Pandey BD, Mankhand TR. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy. 2014; 150:192-208. https://doi.org/10.1016/j.hydromet.2014.10.012
Yasin O, Zahra N, Mahmoud N, Nasrin Sh, Morteza A, Khatereh P, Amir R. Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination. 2022; 529. https://doi.org/10.1016/j.desal.2022.115624
Shulei W, Xin Ch, Ying Zh, Yang Zh, Shili Zh. Lithium adsorption from brine by iron-doped titanium lithium ion sieves. Particuology. 2018; 41:40-47. https://doi.org/10.1016/j.partic.2018.02.001
Snydacker DHI, Hegde V, Aykol M, Wolverton C. Computational Discovery of Li-M-O Ion Exchange Materials for Lithium Extraction from Brines. Chemistry of Materials. 2018; 30:6961. https://10.1021/acs.chemmater.7b03509
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 A.A. Yersaiynova, Z.B. Karshyga, N.A.А. Muhammad, A.M. Yessengaziyev, B.M. Orynbayev

This work is licensed under a Creative Commons Attribution 4.0 International License.