Deposition of carbonitride titanium coatings by magnetron sputtering and its effect on tribo-mechanical properties

Authors

  • A.A. Mamayeva “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan
  • A.K. Kenzhegulov “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan
  • A.V. Panichkin “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan
  • B.B. Kshibekova “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University, Almaty, Kazakhstan
  • N. Bakhytuly “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

DOI:

https://doi.org/10.31643/2022/6445.19

Keywords:

titanium carbonitride, magnetron sputtering, coating, wear resistance, coefficient of friction.

Abstract

Metal parts in machinery often fail as a result of damage caused by wear and tear, resulting in the loss of functionality of the products. Thin film solid nitride coatings are used to improve the wear resistance and service life of parts and are considered to be effective. The article presents a brief overview of modern literature in the field of obtaining wear resistant coatings of titanium carbonitride by using magnetron sputtering. The review presents a detailed assessment of the scientific results obtained depending on the deposition parameters and the conditions for obtaining coatings. The results of the coefficient of friction, wear rate of the coating and counterbody, nanohardness and adhesion force of coatings obtained by magnetron sputtering and its modifications are shown. The influence of alloying elements on the mechanical and tribological properties of titanium carbonitride coatings is considered. Recent advances in the production of titanium carbonitride coatings with improved wear characteristics are discussed.

Downloads

Download data is not yet available.

Author Biographies

A.A. Mamayeva, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

Associate professor, Candidate of Physical and Mathematical sciences, Head of laboratory "Metal science" of the JSC "Institute of Metallurgy and Ore Beneficiation", Almaty, Kazakhstan. 

A.K. Kenzhegulov, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

PhD, Researcher, JSC "Institute of Metallurgy and Ore Beneficiation", Almaty, Kazakhstan.

A.V. Panichkin, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

Candidate of Technical sciences, Head of the National Scientific Collective Use Laboratory of JSC "Institute of Metallurgy and Ore Beneficiation", Almaty, Kazakhstan.

B.B. Kshibekova, “Institute of Metallurgy and Ore Beneficiation” JSC, Satbayev University, Almaty, Kazakhstan

Researcher, JSC "Institute of Metallurgy and Ore Beneficiation", Almaty, Kazakhstan.

N. Bakhytuly, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

Junior Researcher, JSC "Institute of Metallurgy and Ore Beneficiation", Almaty, Kazakhstan.

References

Ceschini L, Lanzoni E, Palombarini G, Sambogna G. Frictional behaviour and wear resistance of TiN-based PVD coatings dry sliding against a TiN coated tool steel. Metallurgia Italiana. 1999;91:45-51.

Rodriguez RJ, Garcia JA, Medrano A, Rico M, Sanchez R, Martinez R, Labrugere C,Lahaye M, Guette A. Tribological behaviour of hard coatings deposited by arc-evaporation PVD. Vacuum 2002;67:559-566. https://doi.org/10.1016/s0042-207x(02)00248-8

Yeshmanova GB, Smagulov DU, Blawert C. Plasma electrolytic oxidation technology for producing protective coatings of aluminum alloys. Complex Use of Mineral Resources. 2021;2(317):78-93.https://doi.org/10.31643/2021/6445.21

RamazanovaJM, ZamalitdinovaMG.Physical and mechanical properties investigation of oxide coatings on titanium. Complex Use of Mineral Resources 2019;2:34-41. https://doi.org/10.31643/2019/6445.14

Kozyreva LV, Fadeev OV,Yudin AO. The algorithm of development safe methods for depositing metallic coatings by CVD-method of organometallic compounds. Complex Use of Mineral Resources2020;1(312):5-10. https://doi.org/10.31643/2020/6445.01

UskenbayevaAM, AubakirovaRK, PanickinAV, DzhumabekovDM.Polucheniye misheney na osnove alyuminidnykh sistem dlya magnetronnogo osazhdeniya zharostoykikh pokrytiy [Preparation of targets based on aluminide systems for magnetron deposition of heat-resistant coatings]. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a = Complex Use of Mineral Resources2017;4:49-56.(in Russ.).

Kapsalamova FR, Kenzhaliyev BK, Mironov VG, Krasikov SA. Structural and phase transformations in wear resistant Fe-Ni-Cr-Cu-Si-B-C coatings. Journal of the Balkan Tribological Association 2019;25:95-103.

Arndt M, Westphal H. Influence of residual stresses and nanostructure on the properties and applications of PVD coatings.In: Institute of Production Engineering and Machine Tools, organizer. Proceedings of the7th International Conference "THE Coatings"in Manufacturing Engineering and EUREKA partnering event;2008 October 1-3;Kallithea of Chalkidiki, Greece. p.151-155.

Sagdoldina Zh, Skakov M, Rahadilov B, Zhadyranova А. Struktura poverkhnosti bystrorezhushchey stali R6M5 posle elektronno-luchevoy obrabotki [Preparation of TiN/Al2O3 coatings by mechanical fusion]. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a = Complex Use of Mineral Resources2017;3:47-53.(in Russ.).

Zhang GJ,Li B, Jiang BL, Chen DC, Yan FX. Microstructure and mechanical properties of multilayer Ti(C,N) films by closed-field unbalanced magnetron sputtering ion plating. MaterialScienceTechnology2010;26:119-124. https://doi.org/10.1016/s1005-0302(10)60019-9

Martinez-Martinez D, Sanchez-Lopez JC, Rojas TC, Fernandez A, Eaton P, Belin M. Structural and microtribological studies of Ti-C-N based nanocomposite coatings prepared by reactive sputtering. Thin Solid Films 2005;472:64-70. https://doi.org/10.1016/j.tsf.2004.06.140

Sedira S, Achour S, Avci A, Eskizeybek V. Physical deposition of carbon doped titanium nitride film by DC magnetron sputtering for metallic implant coating use. Applied Surface Science2014;29515:81-85. https://doi.org/10.1016/j.apsusc.2014.01.010

Anusha TVV, Subramanian B. Enhancement of bioactivity of pulsed magnetron sputtered TiCxNy with bioactive glass (BAG) incorporated polycaprolactone (PCL) composite scaffold. Journal of Alloys and Compounds 2015;649:1210-1219. https://doi.org/10.1016/j.jallcom.2015.06.250

Bunshah RF. Handbook of Hard Coatings Deposition Technologies, Properties and Applications, Norwich:Noyes Publications / William Andrew Publishing LLC;2001.

Saoula N, Madaoui N, Tadjine R, Erasmus RM, Shrivastava S, Comins JD. Influence of substrate bias on the structure and properties of TiCN films deposited by radio-frequency magnetron sputtering. Thin Solid Films 2016;616:521-529. https://doi.org/10.1016/j.tsf.2016.08.047

Auciello O, Engemann J. Multicomponent and multilayered thin films for advanced microtechnologies: techniques, fundamentals and devices, Bad Windsheim: NATO ASI Series, Springer;1993.

Chen R, Tu JP, et al. Microstructure, mechanical and tribological properties of TiCN nanocomposite films deposited by DC magnetron sputtering. Surface & Coatings Technology 2011;205:5228-5234. https://doi.org/10.1016/j.surfcoat.2011.05.034

Polcar TR, Novak P, Siroky P. The tribological characteristics of TiCN coating at elevated temperatures. Wear. 2006;260:40-49.https://doi.org/10.1016/j.wear.2004.12.031

Polcar T, Kubart T, Novak R, Kopecky L, Siroky P. Comparison of tribological behaviour of TiN, TiCN and CrN at elevated temperatures. Surface & Coatings Technology 2005;193:192-199. https://doi.org/10.1016/j.surfcoat.2004.07.098

Schneider JM et al. X-Ray diffraction investigations of magnetron sputtered TiCN coatings. Surface and Coatings Technology 1995;74:312-319. https://doi.org/10.1016/0257-8972(95)08238-7

Senna LF et al. Structural, chemical, mechanical and corrosion resistance characterization of TiCN coatings prepared by magnetron sputtering. Surface and Coatings Technology1997;94-95:390-397. https://doi.org/10.1016/s0257-8972(97)00447-7

Zheng XH, Tu JP, Gu B, Hu SB. Preparation and tribological behavior of TiN/a-C composite films deposited by DC magnetron sputtering. Wear2008;26:261-265. https://doi.org/10.1016/j.wear.2007.10.007

Mamaeva A, Kenzhegulov A, Panichkin A, Alibekov Z, Wieleba W. Effect of Magnetron Sputtering Deposition Conditions on the Mechanical and Tribological Properties of Wear-Resistant Titanium Carbonitride Coatings. Coatings2022;12(2):193. https://doi.org/10.3390/coatings12020193

Kenzhegulov, А.К.; Mamayeva, A.A.; Panichkin, A.V. Adgezionnyye svoystva kaltsiy-fosfatnykh pokrytiy na titane [Adhesion properties of calcium phosphate coatings on titanium]. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a = Complex Use of Mineral Resources 2017;3:35-41.(in Russ.).

Saoula N, Madaoui N, Ait Djafer AZ, Annou K, Tadjine R, Shrivastava S, Erasmus RM, Comins JD. Mechanical proprieties of TiN, TiC and TiCN coatings deposited by magnetron sputtering deposition technique.In: Tampere University of Technology,organizer. Surface modification technologies XXVIII proceedings of the Twenty Eighth International Conference on Surface Modification Technologies;2014 June 16-18;Tampere, Finland. p. 521-530.

Bull SJ, Bhat DG, Staia MH. Properties and performance of commercial TiCN coatings. Part 2: tribological performance. Surface and Coatings Technology2003;163-164:507-514. https://doi.org/10.1016/s0257-8972(02)00651-5

Mechri H, Saoula N, Madaoui N. Friction and wear behaviors of TiCN coating treated by R.F magnetron sputtering. In:Research Center in Industrial Technologies CRTI, organizer. 7th African Conference on Non Destructive Testing ACNDT 2016 & the 5th International Conference on NDT and Materials Industry and Alloys (IC-WNDT-MI);2016July 31;Algiers, Algeria p.16-20.

Alfonso E, Olaya J, Cubillos G. Crystallization –Science and Technology.Rijeka:InTech, 2012.

Sarakinos K, Alami J, Konstantinidis S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf Coat Technol 2010;204:1661-1684. https://doi.org/10.1016/j.surfcoat.2009.11.013

Zhang GJ, Li B, Jiang BL, Yan FX, Chen DC. Microstructure and tribological properties of TiN, TiC and Ti (C, N) thin films prepared by closed-field unbalanced magnetron sputtering ion plating. Appl Surf Sci2009;255:8788-8793. https://doi.org/10.1016/j.apsusc.2009.06.090

Martinez-Martinez D, Lopez-Cartes C, Justo A, Fernandez A, Sanchez-Lopez JC, Garcia-Luis A, Brizuela M, Onate JI. Tailored synthesis of TiC∕a-CTiC∕a-C nanocomposite tribological coatings. Vac Sci Technol A2005;23:1732-1736. https://doi.org/10.1116/1.2101810

Sanchez-Lopez JC, Martinez-Martinez D, Abad M.D, Fernandez A. Metal carbide/amorphous C-based nanocomposite coatings for tribological applications. Surf Coat Technol2009;204:947-954. https://doi.org/10.1016/j.surfcoat.2009.05.038

Saoula N, Henda K, Kesri R, Shrivastava S, Erasmus RM, Comins JD. Effect of the plasma deposition parameters on the properties of Ti/TiC multilayers for hard coatings applications. Acta Physica Polonica A 2012;121:172-174. https://doi.org/10.1063/1.2999950

Saoula N, Djerourou S, Yahiaoui K, Henda K, Kesri R, Erasmus RM, Comins J.D. Study of the deposition of Ti/TiN multilayers by magnetron sputtering. Surf. Interface Anal2010;42:1176-1179. https://doi.org/10.1002/sia.3299

Wang Q, Zhou F, Chen K, Wang M, Qian T. Friction and wear properties of TiCN coatings sliding against SiC and steel balls in air and water. Thin Solid Films 2011;519:4830-4841. https://doi.org/10.1016/j.tsf.2011.01.038

Santecchia E, Zalnezhad E, Hamouda AMS, Musharavati F, Cabibbo M, Spigarelli S. Wear resistance investigation of titanium nitride-based coatings. Ceramics International2015;41:10349-10379. https://doi.org/10.1016/j.ceramint.2015.04.152

Danısman S, Odabas D, Teber M. The Effect of Coatings on the Wear Behavior of Ti6Al4V Alloy Used in Biomedical Applications, In: IOP Publishing, organizer. 9th International Conference on Tribology;2017September13-15, Nevsehir, Turkey, p.1-12.

Correa JF, Aperador W, Caicedo JC, Alba NC, Amaya C. Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and nonlubricated environments in manufactured devices. Materials Chemistry and Physics 2020;252:123164. https://doi.org/10.1016/j.matchemphys.2020.123164

Shi Y, Peng H, Xie Y, Xie G, Zhao Ch, Li S. Plasma CVD of hard coatings Ti(CNO) using metallo-organic compound Ti(OC3H7)4. Surface and Coatings Technology2000;132:26-30. https://doi.org/10.1016/s0257-8972(00)00743-x

Endler I, Hohn M, Herrmann M, Holzschuh H, Pitonak R, Ruppi S, van den Berg H, Westphal H, Wilde L. Aluminium-rich TiAlCN coatings by low pressure CVD. Surface & Coatings Technology2010;205:1307-1312. https://doi.org/10.1016/j.surfcoat.2010.09.002

Behrens BA, Huskic A. Reduction of wear on dies for precision forging ofgears through multi-layer hard material coating (TiN-TiCN-TiC). Materialwiss Werkst2005;36:218-225.

Agudelo LC, Ospina R, Castillo HA, Devia A. Synthesis of Ti/TiN/TiCN coatings grown in graded form by sputtering DC. Phys Scr2008;T131:1-3. https://doi.org/10.1088/0031-8949/2008/t131/014006

Su YL, Kao WH. Tribological behavior and wear mechanisms of TiN/TiCN/TiN multilayer coatings. Mater Eng Perform 1998;7:601-612. https://doi.org/10.1361/105994998770347440

Razmi A, Yeşildal R. Microstructure and mechanical properties of TiN/TiCN/TiC multilayer thin films deposited by magnetron sputtering. International Journal of Innovative Research and Reviews2018;5(1):15-20. https://doi.org/10.20944/preprints201807.0127.v1

Zheng J, Hao J, Liu X, Gong Q, Liu W. A thick TiN/TiCN multilayer film by DC magnetron sputtering. Surface & Coatings Technology 2012;209:110-116. https://doi.org/10.1016/j.surfcoat.2012.08.045

Stanishevsky A, Lappalainen R. Tribological properties of composite Ti(N,O,C) coatings containing hard amorphous carbon layers. Surf Coat Technol2000;123:101-105. https://doi.org/10.1016/s0257-8972(99)00514-9

Hsieh JH, Wu W, Li C, Yu CH, Tan BH. Deposition and characterization of Ti(C,N,O) coatings byunbalanced magnetron sputtering. Surface and Coatings Technology 2003;163:233-237. https://doi.org/10.1016/s0257-8972(02)00494-2

Hsieh JH, Tan ALK, Zeng XT. Oxidation and wear behaviors of Ti-based thin films. Surf Coat Technol 2006;201:4094-4098. https://doi.org/10.1016/j.surfcoat.2006.08.026

Olteanu C, Munteanu D, Ionescu C, Munteanu A. Tribological characterisation of magnetron sputtered Ti(C, O, N) thin films. Int J Materials and Product Technology 2010;39:186-194. https://doi.org/10.1504/ijmpt.2010.034270

Braic V, Braic M, Balaceanu M, Vladescu A, Zoita CN, Titorencu I, Jinga V. (Zr,Ti)CN coatings as potential candidates for biomedical applications. Surface & Coatings Technology 2011;206:604-609. https://doi.org/10.1016/j.surfcoat.2011.03.074

Abd El-Rahman AM, Wei R. A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti–Si–C–N nanocomposite coatings. Surface & Coatings Technology2014;241:74-79. https://doi.org/10.1016/j.surfcoat.2013.08.049

Hatem A, Lin J, Wei R, Torres RD, Laurindo C, Biscaia de Souza G, Soares P. Tribocorrosion behavior of low friction TiSiCN nanocomposite coatings deposited on titanium alloy for biomedical applications.Surface & Coatings Technology 2018;347:1-12. https://doi.org/10.1016/j.surfcoat.2018.04.049

Shtansky DV, Kuptsov KA, Kiryukhantsev-Korneev PhV, Sheveiko AN, Fernandez A, Petrzhik MI. Comparativeinvestigation of Al-and Cr-doped TiSiCN coatings. Surface & Coatings Technology 2011;205:4640-4648. https://doi.org/10.1016/j.surfcoat.2011.04.012

Tillmann W, Grisales D, Stangier D, et al. Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS. Surface & Coatings Technology 2021;406:126664. https://doi.org/10.1016/j.surfcoat.2020.126664

Tillmann W, Grisales D, Tovar CM, Contreras E, Apel D, Nienhaus A, Stangier D, Lopes Dias NF. Tribological behaviour of low carbon-containing TiAlCN coatings deposited by hybrid (DCMS/HiPIMS) technique. Tribology International. 2020;151:106528. https://doi.org/10.1016/j.triboint.2020.106528

Sanchez-Lopez JC, Abad MD, Carvalho I, Escobar GR, et. all. Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings. Surface & Coatings Technology 2012;206:2192-2198. https://doi.org/doi:10.1016/j.surfcoat.2011.09.059

Thampi VVA, Dhandapani P, Manivasagam G, Subramanian B. Enhancement of bioactivity of titanium carbonitride nanocomposite thin films on steels with biosynthesized hydroxyapatite. International Journal of Nanomedicine 2015;10:107-118. https://doi.org/10.2147/IJN.S79976

Lin J, Moore JJ, Mishra B, Pinkas M, Sproul W.D. The structure and mechanical and tribological properties of TiBCN nanocomposite coatings. Acta Materialia2010;58:1554-1564. https://doi.org/10.1016/j.actamat.2009.10.063

Ataie SA, Soltanieh M, Naghizadeh R, Ahmadi M, Ghanaatshoar M. Effects of substrate temperature and reactive gas flow rate on the crystalline ceramic phases formation and tribological properties of W–Ti–Co–C–N thin films produced by co-sputtering. Ceramics International 2020;46:29137-29149. https://doi.org/10.1016/j.ceramint.2020.08.087

Onoprienko AA, Ivashchenko VI, Dub SN, Khyzhun OYu, Timofeeva II. Microstructure and mechanical properties of hard Ti–Si–C–N films deposited by dc magnetron sputtering of multicomponent Ti/C/Si target. Surface & Coatings Technology 2011;205:5068-5072. https://doi.org/10.1016/j.surfcoat.2011.05.009

Zhang X, Qiu Y, Tan Zh, Lin J, Xu A, Zeng Y, Moore JJ, Jiang J. Effect of Al content on structure and properties of TiAlCN coatings prepared by magnetron sputtering. Journal of Alloys and Compounds 2014;617:81-85. https://doi.org/10.1016/j.jallcom.2014.08.009

Kiryukhantsev-Korneev FV, Kuptsov KA, Sheveiko AN, Levashov EA, Shtansky DV. Wear Resistant Ti–Al–Si–C–N coatings produced by magnetron sputtering of SHS targets. Russian Journal of NonFerrous Metals2013;54:330-335. https://doi.org/10.3103/s106782121304007x

Downloads

Published

2022-02-11

How to Cite

Mamayeva А., Kenzhegulov А., Panichkin, A., Kshibekova, B., & Bakhytuly, N. (2022). Deposition of carbonitride titanium coatings by magnetron sputtering and its effect on tribo-mechanical properties. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 321(2), 65–78. https://doi.org/10.31643/2022/6445.19