Calculation of the thermoplastic beryllium oxide slurry molding with ultrasonic activation

Authors

  • U.K. Zhapbasbayev Satbayev University
  • G.I. Ramazanova Satbayev University
  • V.I. Terekhov Kutateladze Institute of Thermophysics
  • Z.К. Sattinova L.N.Gumilyov Eurasian National University

DOI:

https://doi.org/10.31643/2024/6445.41

Keywords:

thermoplastic slurry, formation, shrinkage, casting properties, beryllium oxide, ultrasonic treatment.

Abstract

The article presents the results of assessing thermal shrinkage during the formation of beryllium oxide ceramics using the hot casting method. The thermoplastic slurry is a composite system with a dispersion medium (binder) that has a very low thermal conductivity compared to the dispersed phase (beryllium oxide). Ultrasonic treatment reduces the viscosity of the slurry and improves its casting properties. The formation of beryllium oxide slurry is carried out without disrupting the integrity of the system and depends on the casting speed and temperature factors. The combined influence of these factors determines the casting properties of the slurry. Cooling - solidification of the slurry in the casting mold occurs in stages in the liquid, amorphous states with a phase transition, and in the viscoplastic state of the casting. The cooling rate of the casting at all stages depends on the cavity design, the rheological properties of the slurry, and the casting process parameters. It is important to maintain the integrity of the casting due to temperature shrinkage.

Downloads

Download data is not yet available.

Author Biographies

U.K. Zhapbasbayev, Satbayev University

Doctor of Technical Sciences, Professor, Head of the Research and Production Laboratory "Modeling in Energy", Satbayev University, 22 Satpaev Street, 050013 Almaty, Kazakhstan. 

G.I. Ramazanova, Satbayev University

Candidate of physical and mathematical sciences, Leading Researcher. Research and Production Laboratory “Modeling in Energy”, Satbayev University, 22 Satbayev str., 050013 Almaty, Kazakhstan.

V.I. Terekhov, Kutateladze Institute of Thermophysics

Doctor of Technical Sciences, Professor, Chief Researcher of the Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences, 1 Academician Lavrentiev av., 630090 Novosibirsk, Russia. 

Z.К. Sattinova, L.N.Gumilyov Eurasian National University

Candidate of physical and mathematical sciences, Associated Professor, L.N. Gumilev Eurasian National University, 2 Satpayev str., 010008 Astana, Kazakhstan. 

References

Akishin GP, Kiiko VS. Proizvodstvo VeO-keramiki v SSSR i yeye vozrozhdeniye v sovremennoy Rossii [Production of VeO-ceramics in theUSSR and its revival in modern Russia]. New refractories[Novyye ogneupory]. 2019; 5:127-132. (in Russ.).

Kiiko V, Makurin Yu, Ivanovsky A. Keramika iz oksida berilliya: proizvodstvo, fiziko-khimicheskiye svoystva, primeneniye [Beryllium Oxide Ceramics: production, physico-chemical properties, application]. Yekaterinburg: Ural'skoye otdeleniye RAN [Yekaterinburg: Ural Branch of the Russian Academy of Sciences. 2006.(in Russ.).

Kiiko VS, Vaispapir VY. Thermal conductivity and prospects for application ofBeO ceramic in electronics.Glass Ceram. 2014; 71:387-391. https://doi.org/10.1007/s10717-015-9694-6

Akishin GP, Turnaev SK, Vaispapir VYa, Gorbunova MA, Makurin YN, Kiiko VS, IvanovskiiAL. Thermal conductivity of beryllium oxide ceramic.Refract. Ind. Ceram. 2009; 50:465-468. https://doi.org/10.1007/s11148-010-9239-z

Vajdi M, Shahedi AslM, Nekahi S, Moghanlous FS, JafargholinejadS, MohammadiM.Numerical assessment of beryllium oxide as an alternative material for micro heat exchangers.Ceram. Int. 2020; 46:19248-19255. https://doi.org/10.1016/j.ceramint.2020.04.263

Shakhov SA, Bitsoev GD. Primeneniye ul'trazvuka v proizvodstve keramicheskikh izdeliy s vysokoy teploprovodnost'yu [Application of Ultrasound in the Manufacture of High Thermal Conductivity Ceramic Article]. Ust'-Kamenogorsk [Ust’-Kamenogorsk]. 1999. (in Russ.).

Zhapbasbayev U, Ramazanova G, Kenzhaliev B, Sattinova Z, Shakhov S. Experimental and calculated data of the berylliumoxide slurry solidification. Appl. Therm. Eng. 2016; 96:593-599. https://doi.org/10.1016/j.applthermaleng.2015.11.114

Akishin GP, Turnaev SK, Vaispapir VYa, Kiiko VS, Shein IR, Pletneva ED, Timofeeva MN, Iva AL. Composition of beryllium oxide ceramics.Refractories and Industrial Ceramics. 2011; 11:377-381.

Zhapbasbayev UK, Kaltayev A, Bitsoyev GD, Turnayev SK. Hydrodynamics of mouldingof ceramic articles for beryllia with ultrasonic activation. Proceedings ASME International Mechanical Engineering Congress and Exposition, Orlando. 2008, 1301-1307. https://doi.org/10.1115/IMECE2005-79843

Pivinskii YE, Grishpun EM, Gorokhovskii AM. Engineering, manufacturing, and servicing of shaped and unshaped refractories based on highly concentrated ceramic binding suspensions.Refract. Ind. Ceram. 2015; 56:243-253. https://doi.org/10.1007/s11148-015-9823

Shakhov S. Controlling the deformation behavior of thermoplastic slips with ultrasound. Glass and Ceramics. 2007; 64:354-356. https://doi.org/10.1007/s10717-007-0088-2

Shakhov SA. Use of ultrasound in order to intensify molding of high-temperature thermocouple sheaths, Refract. Ind. Ceram. 2008; 49:261-264. https://doi.org/10.1007/s11148-008-9074-7

Shakhov SA. Mechanism for compensating slip volume changes during hot casting of ceramic, Glass Ceram. 2007; 64:229-231. https://doi.org/10.1007/s10717-007-0057-9

Shakhov SA, Gagarin AE. Rheological characteristics of thermoplastic disperse systems treated with ultrasound.Glass Ceramics. 2008; 65:19-21.

Sattinova ZK, Bekenov TN, Assilbekov BK, Ramazanova GI, Zhapbasbayev UK, Nussupbek ZhT. Mathematical modeling of the rheological behavior of thermoplastic slurry in the molding process of beryllium ceramics. Ceram. Int. 2022; 48:31102-31111

Bingham EC. Fluidity and Plasticity.New York: McGraw-Hill.1922.

Heever EVD, Sutherland A, HaldenwangR. Influence of the rheological model used in pipe-flow prediction techniques for homogeneous non-newtonian fluids.J. Hydraulic Eng. 2014; 140(12):04014059.

Singh J, Rudman M, Blackburn HM, Chryss A, Pullum L, Graham LJW. The importance of rheology characterization in predicting turbulent pipe flow of generalized Newtonian fluids. J. Non-Newtonian Fluid Mech. 2016; 232:11-21.

Papanastasiou ТС. Flows of materials with yield. J. Rheology. 1987; 31:385-404.

Voller VR, Swaminathan CR, Thomas BG. Fixed grid techniques for phase change problems: a review. Int. J. Numerical Methods Eng. 1990; 30:875-898.

JabbariM, BulatovaR, TokAIY, BahlCRH, MitsoulisE, HattelJH.Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis, Mater. Sci. Eng., B. 2016; 212:39-61. https://doi.org/10.1016/j.mseb.2016.07.011

Moraga NO, Lemus-Mondaca RA. Numerical conjugate air mixed convection/non-Newtonian liquid solidification for various cavity configurations and rheological models.Int. J. Heat Mass Tran. 2011; 54:5116-5125. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.032

Yamamoto T, Komarov SV. Influence of ultrasound irradiation on transient solidification characteristics in DC casting process: numerical simulation and experimental verification. J. Mater. Process. Technol. 2021; 294:117116. https://doi.org/10.1016/j.jmatprotec.2021.117116

Carbona M, Cortes C. Numerical simulation of a secondary aluminum melting furnace heated by a plasma torch. J. Mater. Process. Technol. 2014; 214:334-346.

Bannach N. Phase Change: Cooling and Solidification of Metal. https://www.comsol.com/blogs/phase-change-cooling-solidification-metal/2014, accessed 12.08.14

CebeciT, Bradshaw P. Physical and Computational Aspects of Convective Heat. Transfer. Physical and Computational Aspects of Convective Heat Transfer.New York: Springer. 1988. https://doi.org/10.1007/978-1-4612-3918-5

Tannehill J, Pletcher R, Anderson D. Vychislitel'naya mekhanika zhidkosti i teploperedacha [Computational Fluid Mechanics and Heat Transfer. Moskva: Mir [Moscow: Mir].1990. (in Russ.).

Downloads

Published

2024-01-11

How to Cite

Zhapbasbayev, U., Ramazanova, G., Terekhov, V., & Sattinova, Z. (2024). Calculation of the thermoplastic beryllium oxide slurry molding with ultrasonic activation. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 331(4), 79–89. https://doi.org/10.31643/2024/6445.41