Thermal degradation of hard alloys of the niobiumcadmium system at low pressure
DOI:
https://doi.org/10.31643/2020/6445.05Keywords:
niobium, cadmium, solid solution, intermetallic compound, diffractometry, sublimation.Abstract
Due to the lack of data on the double film Nb-Cd system thermal stability, the effect of thermo-vacuum treatment of cadmium solid solutions in niobium, in intermetallic compound NbCd2 and in cadmium-based alloys on the structure of materials was studied. A step-by-step isochronous annealing at a temperature of 300 and 500°C and a pressure of 1·10-3 Pa was used as the research method followed by tracking changes in the composition and structure by comparing the diffractometric data before and after heat treatment. The amount of cadmium in the coating, the sublimation (evaporation) rate of cadmium from film coatings was determined based on the previously established dependence of the lattice parameter of the body-centered cubic lattice of solid solutions on the composition. As a result, the heating of film coatings (49.0 - 64.5 at % Cd) represented by solid solutions in high vacuum up to 300°C was founded to be accompanied by the onset of intense degradation of the crystalline niobium-cadmium system due to the diffusion of cadmium atoms to the solid phase-vapor interface and its subsequent sublimation. Coatings from the NbCd2 intermetallic compound which is a degenerate semiconductor and cadmium-based solid solutions (72.5 and 76.8 at % Cd) including the amorphized phase of the intermetallic compound, after exposure at this temperature are degraded due to the complete transfer of cadmium to the vapor phase by evaporation. Upon thermal exposure to a temperature of 200°C, the structure of solid solutions of cadmium in niobium and the NbCd2 intermetallic compound was stable.
Downloads
References
Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews. 2006. 35, 583-592 (in Eng.). https://doi.org/10.1039/B502142C
Roduner E. Razmernyye effekty v nanomaterialakh (Size effects in nanomaterials). Moscow: Tekhnosfera. 2010, 192 (in Eng.).
Peppiatt S. J. The melting of particles. II. Bismuth. Proceedings of the Royal Society A. London. 1975. A345, 1642, 401-412 (in Eng.). https://doi.org/10.1098/rspa.1975.0145
Berty J., David M.J., Lafourcade L. Etude de la surfusion de films mines de bismuth par diffracyon des electrons. Thin Solid Films. 1977. 46, 2. 177-185. (in Eng.). https://doi.org/10.1016/0040-6090(77)90060-8
Zhdanov G.S. Temperaturnyy gisterezis fazovogo perekhoda i mekhanizm kristallizatsii tonkikh metallicheskikh plenok (Temperature hysteresis of the phase transition and the crystallization mechanism of thin metal films).Fizika tverdogo tela = Solid State Physics. 1977. 19, 1. 299-301 (in Russ.).
Ovsiyenko D.E., Maslov V.V., Kostyuchenko V.P. Pereokhlazhdeniye nikelya i kobalta v malykh obyemakh(Subcooling of nickel and cobalt in small volumes) Kristallografiya = Crystallography.1971. 16, 2. 405-407 (in Russ.).
Buffat Ph., Borel J-P. Size effect on the melting temperature of gold particles. Physical Review A. 1976. 6. 2287-2298 (in Eng.). https://doi.org/10.1103/PhysRevA.13.2287
Perepezko J.H., Rasmussen D.H. Solidification of highly supercooled liquid metal and alloys. Journal of Non-Crystalline Solids. 1993. 156-158. 463-472 (in Eng.). https://doi.org/10.1016/0022-3093(93)90002-F
Zou C., Gao Y., Yang B., Zhai Q. Size dependent melting properties of Sn nanoparticles by chemical reduction synthesis. Transactions of Nonferrous Metals Society of China. 2010. 20. 2. 248-253 (in Eng.). https://doi.org/10.1016/S1003-6326(09)60130-810.
Jiang H., Moon K., Dong H. Size dependent melting properties of tin nanoparticles. Chemical Physics Letters. 2006. 429. 4. 492-496 (in Eng.). https://doi.org/10.1016/j. cplett.2006.08.027
Volodin V.N., Tuleushev Yu.Zh., Nitsenko A.V., Burabaeva N.M. Razmernyy effekt pri formirovanii splava niobiya s kadmiyem ultradispersnymi chastitsami pri nizkoy temperature. (Size effect during the formation of an alloy of niobium with cadmium by ultrafine particles at low temperature). Kompleksnoye ispol’zovanie mineral’nogo syr’a = Complex Use of Mineral Resources. 2018. 4. 98-104 (in Russ.). https://doi.org/10.31643/2018/6445.35
Volodin V.N., Tuleushev Yu.Zh., Nitsenko A.V., Burabaeva N.M. Concentration Limits of Niobium and Cadmium Alloys Existence. Formed by Ultrafine Particles. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. 2019. 1. 30-35 (in Eng.). https://doi.org/10.31643/2019/6445.04
Volodin V.N., Tuleushev Yu.Zh., Trebukhov S.A., Nitsenko A.V., Burabaeva N.M. Polucheniye dvoynykh splavov niobiya s legkoplavkimi metallami osazhdeniyem nanochastits (Obtaining double alloys of niobium with fusible metals by nanoparticle deposition) Izvestya vuzov, Tsvetnaya metallurgia = Universities Proceedings Nonferrous Metallurgy. 2019. 5. 40-48 (in Russ.). https://doi.org/10.17073/0021-3438-2019-5-40-48
Stowell M.J. The Solid-Liquid Interfacial Free Energy of Lead from Supercooling Data. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1970. 22. 176. 1-6 (in Eng.). https://doi.org/10.1080/14786437008228146
Qingshan F., Yongqiang X., Zixiang C. Size - and shape - dependent surface thermodynamic properties of nanocrystals. Journal of Physics and Chemistry of Solids. 2018. 116. 79-85 (in Eng.). https://doi.org/10.1016/j.jpcs.2018.01.018
Mu J. Zhu Z.W. Zhang H.F. Size dependent melting behaviors of nanocrystalline in particles embedded in amorphous matrix. Journal Applied Physics. 2012. 111. 4. P. 1–4 (in Eng.). https://doi.org/10.1063/1.3686624
Luo W., Su K., Li K., Li Q. Connection between nanostructured materials size dependent melting and thermodynamic properties of bulk materials. Solid State Communications. 2011. 151. 3. 229-233 (in Eng.).https://doi.org/10.1016/j.ssc.2010.11.025
Volodin V.N., Tuleushev Yu.Zh., Zhakanbayev E.A., Migunova A.A., Nitsenko A.V. Nekotoryye fizicheskiye svoystva novogo intermetallida NbCd2. ( Some physical properties of the new NbCd2 intermetallic). Fizika i tekhnika poluprovodnikov = Physics and technology of semiconductors.2019. 53. 8. 1047-1051 (in Russ.). https://doi.org/10.21883 / FTP.2019.08.47993.9122
Tuleushev Yu.Zh., Volodin V.N., Zhakanbayev E.A. Vysokotemperaturnyy raspad tverdykh rastvorov beta-tantala s medyu v plenkakh. (High-temperature decomposition of solid solutions of beta-tantalum with copper in films) Fizika metallov i metallovedeniye = Physics of Metals and Metallography. 2014.115. 5. 512-516 (in Russ.). https://doi.org/10.7868/s0015323014050118
Volodin V.N. Fizicheskaya khimiya i tekhnologiya rafinirovaniya kadmiya (Physical chemistry and cadmium refining technology). Almaty: Print-S. 2013. 238 (in Russ.). https://doi.org/10.31643/2011-2019.004
Fizicheskiye velichiny. Spravochnik (Physical quantities. Directory). Pod red. I.S. Grigoryeva. E.Z. Meylikhova. M.: Energoatomizdat. 1991 (in Russ.).
Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – No3 (31 0). -Page: 64-75. (In Eng.). https://doi.org/10.31643/2019/6445.30
Trebukhov S.A, Volodin V.N, Nitsenko A.V, Burabaeva N.M, Trebukhov A.A. Decomposition of iron, cobalt and nickel selenides in selenium distillation conditions. Kompleksnoye ispol’zovanie mineral’nogo syr’a = Complex Use of Mineral Resources. 2016. 4, 58-62 (in Eng.).
Panichkin A.V, Derbisalin A.M, Dzhumabekov D.M, Alibekov Zh., Imbarova A.T. Improvement of methodology and equipment for determination of hydrogen permeability of thin flat metallic membranes. Kompleksnoye ispol’zovanie mineral’nogo syr’a [Complex Use of Mineral Resources]. 2017. 2, 46-52 (in Eng.).
Kenzhaliyev B.K, Surkova T.Y, Yessimova D.M.Concentration of rare-earth elements by sorption from sulphate solutions. Kompleksnoye ispol’zovanie mineral’nogo syr’a [Complex Use of Mineral Resources]. 2019. 3, 5 -9 (in Eng.). https://doi.org/10.31643/2019/6445.22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Volodin, V., Tuleushev, Y., Kenzhaliyev, B., & Trebukhov, S.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.