Granular magnesia compositions
DOI:
https://doi.org/10.31643/2021/6445.04Keywords:
Caustic magnesite, filler, composition, granules, porous structure.Abstract
The results of studies of granular materials from magnesia compositions are presented. To obtain the compositions, fillers of various origins were used: sawdust, wheat husk, rubber and cork crumbs, ash microsphere. The formulations of molding mixtures that ensure the production of granules by the method of pelletizing are determined. The factors of influence on the strength of granules at various stages of the technological process are revealed. Methods for reducing the density of magnesia granular materials by combining various types of fillers and introducing a gas-forming agent are proposed. The use of caustic magnesite ensures reliable bonding of the filler particles in the granules. Features of hydrate formation of magnesia binders allows the use of low-temperature processing of raw granules. The expediency of increasing the temperature of the salt recluse to accelerate the hardening of the porous granules is shown. Magnesia granules with a bulk density of 400 – 500 kg/m3 were obtained. The work is aimed at creating a resource-saving technology of non-annealed granular aggregates for light concrete
Downloads
References
Naveen Kumar K., Vijayan D.S., Divahar R., Abirami R., Nivetha C.An experimental investigation on light-weight concrete blocks using vermiculite. Materials Today: Proceedings. 2020. 22.(3),987 –991. https://doi.org/10.1016/j.matpr.2019.11.237 (inEng.).
Zhou J., Ji L., Gong C., Lu L., Cheng X. Ceramsite vegetated concrete with water and fertilizer conservation and light weight: Effect of w/c and fertilizer on basic physical performances of concrete and physiological characteristics of festuca arundinacea. Construction and Building Materials. 2020. 236. (10), 117785. https://doi.org/10.1016/j.conbuildmat.2019.117785 (inEng.).
KocianovaM., DrochytkaR.Possibilities of Lightweight High Strength Concrete Production from Sintered Fly Ash Aggregate. Procedia Engineering. 2017. 195,9 –16. https://doi.org/10.1016/j.proeng.2017.04.517 (inEng.).
Davidyuk A.N. Legkiye betony na steklogranulyatakh –budushcheye ograzhdayushchikh (Lightweight concrete on glass granulates –the future of enclosing structures). Tekhnologii betonov = Concrete technologies. 2015. 9 –10, 17 –20 (in Russ).
Mizuriaev S.A., Zhigulina A.Yu., Solopova G.S. Production technology of waterproof porous aggregates based on alkali silicate and non-bloating clay for concrete of general usage. Procedia Engineering. 2015. 111, 540 –544. https://doi.org/10.1016/j.proeng.2015.07.038 (inEng.).
Smoliy V. A., Yatsenko E. A., Kosarev A. S., Goltsman B. M. Razrabotka sostavov i tekhnologicheskikh parametrov sinteza yacheistykh teploizolyatsionnykh stroitelnykh steklomaterialov s zadannoy plotnostyu(Development of compositions and technological parameters for the synthesis of cellular heat-insulating building glass materials with a given density). Steklo i keramika=Glass and ceramics.2016.6,22 –25 (in Russ).
Bakunov B.C., Kochetkov V.A., Naddennyy A.B. Mnogofunktsionalnyy keramicheskiy stroitelnyy material kerpen(Multifunctional ceramic building material kerpen). Stroitelnyye materialy= Construction materials. 2004. 11, 10 –11(in Russ).
Inozemtsev A.S., Korolev E.V. Sravnitelnyy analiz vliyaniya nanomodifitsirovaniya i mikrodispersnogo armirovaniya na protsess i parametry razrusheniya vysokoprochnykh legkikh betonov(Comparative analysis of the effect of nanomodification and microdisperse reinforcement on the process and parameters of destruction of high-strength lightweight concrete). Stroitelnyye materialy= Construction materials. 2017. 7, 11 –15(in Russ).
Karamloo M., Mazloom M., Payganeh G. Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete. Construction and Building Materials. 2016. 123 (1), 508 –515. https: // doi.org/ 10.1016/j.conbuildmat.2016.07.061 (inEng.).
Hou L., Li J., Lu Z., Niu Y., T. LiEffect of nanoparticles on foaming agent and the foamed concrete. Construction and Building Materials. 2019. 227(10), 116698. https://doi.org/10.1016/j.conbuildmat.2019.116698 (inEng.).
Montayev S.A., Shakeshev B.T., Ryskaliyev M.Z., Adilova N. B., Narikov K.A. Collagen agent technology for foam concrete production. ARPN Journal of Engineering and Applied Sciences. 2017. 5,1674 –1678 (inEng.).
Adilkhodzhayev A.I., Igamberdiyev B.G. Voloknistyy zapolnitel iz risovoy solomy i ego vzaimodeystviye s modifitsirovannoy gipsovoy matritsey(Fibrous filler from rice straw and its interaction with a modified gypsum matrix). Problemy sovremennoy nauki i obrazovaniya= Problems of modern science and education. 2020. 6(2), 5 –10. https://doi.org/10.24411/2304-2338-2020-10605 (in Russ).
Costa H., Ju ́lio E., LourençoJ. New approach for shrinkage prediction of high-strength lightweight aggregate concrete. Construction and Building Materials. 2012. 35, 84 –91. https://doi.org/10.1016/j.conbuildmat.2012.02.052 (inEng.).
Vakhshouri B., Nejadi S. Mix design of light-weight self-compacting concrete. Case Studies in Construction Materials. 2016. 4, 1 –14. https://doi.org/10.1016/j.cscm.2015.10.002 (inEng.).
Orentlikher L.P., Soboleva G.N. Bezobzhigovyy kompozitsionnyy poristyy zapolnitel iz vlazhnykh asbestotsementnykh otkhodov i legkiye betony na ego osnove (Non-firing composite porous aggregate from wet asbestos-cement waste and light concretes based on it).Stroitelnyye materialy= Construction materials. 2000. 7, 18 –19(in Russ).
Kevern J.T., NowasellQ.C., Internal curing of pervious concrete using lightweight aggregates. Construction and Building Materials. 2018. 161, 229 –235. https://doi.org/10.1016/j.conbuildmat.2017.11.055 0950-0618 (inEng.).
Pimenov E.G., Pichugin A.P., Khritankov V.F., Denisov A.S. Fiziko-khimicheskiye issledovaniya protsessov snizheniya otkrytoy poristosti krupnogo zapolnitelya betonov (Physico-chemical studies of the processes of reducing the open porosity of a large concrete aggregate). Izvestiya vuzov. Stroitelstvo= News of universities. Construction. 2016. 10 –11, 22 –31(in Russ).
Xiangming Z., Zongjin L. Light-weight wood-magnesium oxychloride cement composite building products made by extrusion. Construction and Building Materials. 2012. 27, 382 –389. https://doi.org/10.1016/j.conbuildmat.2011.07.033 (inEng.).
Miryuk О.А. Properties of magnesium composite materials based on technogenic raw materials. ARPN Journal of Engineering and Applied Sciences. 2018. 13(2), 545 −558 (inEng.).
Miryuk О.А. Activation ofcement clinker with high content of belite //Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a(Complex Use of Mineral Resources). –2020. –No 2(313). p.38-45. https://doi.org/10.31643/2020/6445.15 (inEng.).
Kumar S., Sonat C., Yang E.-H., UnluerC. Performance of reactive magnesia cement formulations containing fly ash and ground granulated blast-furnace slag. Construction and Building Materials. 2020. 232, 117275. https://doi.org/10.1016/j.conbuildmat.2019.117275 (inEng.).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Miryuk О.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.