Microstructural peculiarities of aluminides of nickel, titanium, and cobalt

Authors

  • G.M. Ibraeva “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan
  • B.M. Sukurov “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan
  • R.K. Aubakirova “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan
  • M.K. Kalipekova “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan
  • S.S. Zhunusova “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

DOI:

https://doi.org/10.31643/2019/6445.01

Keywords:

intermetallic phases, aluminides, microstructure, scanning electron microscopy, electron probe microanalysis, microhardness.

Abstract

Scanning electron microscopy, electron probe microanalysis, X-rays diffractometry, and microhardness measurements were used for studies of diffusion zones in systems Al-Тi, Al-Co, and Al-Ni formed by means of diffusion couples method in a temperature range of 1,300-1,350 °С. It was shown that diffusion zones have the multilayer structure with numerous peculiarities. For a number of intermetallic compounds formed in all three systems there were revealed their temperature shifts using the electron probe microanalysis methods and confirmed with X-rays diffractometry. The correlation between the individual intermetallic layers and their microhardness numbers are not always evident. For some aluminides the microhardness can reach 7,060 ± 1,200 MPa (in globular area of Ti5Al11 and TiAl) and 4,938 MPa (in multilayer area of titanium aluminide TiAl2). For very thin (about 10 μm) layers in multilayer area the microhardness has been measured in the first time 4,000 MPa (TiAl) and 4,450 MPa (Ti3Al). The obtained microhardness numbers demonstrated reasonable coincidence with previous published results. Microhardness in Al-Ni system was measured as 5,200 ± 500 MPa (for β-NiAl) and 5,300 ± 860 MPa (for γ΄-Ni3Al). For cobalt aluminide СоАl from Аl-Со system the microhardness showed numbers 3,900 ± 200 MPa, whereas for СоАl3 it was higher up to 6,600 MPa. The intermetallic compound γ΄-Ni3Al considered as the most interesting from practical point of view had small (up to 10 μm) width whereas the next layer Ni3Al5 had the wider (100 μm) width. There were also revealed some globular Ti5Al11 having thin shells which consist of intermetallic Ti9Al2.

Downloads

Download data is not yet available.

Author Biographies

G.M. Ibraeva, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

Engineer, Satbayev University, Institute of Metallurgy and Ore beneficiation, Almaty, Kazakhstan.

B.M. Sukurov, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

Candidate of Technical Sciences, Leading Researcher, Satbayev University, Institute of Metallurgy and Ore beneficiation, Almaty, Kazakhstan.

 

R.K. Aubakirova, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

Candidate of Technical Sciences, Senior Researcher, Satbayev University, Institute of Metallurgy and Ore beneficiation, Almaty, Kazakhstan.

M.K. Kalipekova, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

Associate researcher, Satbayev University, Institute of Metallurgy and Ore beneficiation, Almaty, Kazakhstan. 

S.S. Zhunusova, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University, Almaty, Kazakhstan

Engineer, Satbayev University, Institute of Metallurgy and Ore beneficiation, Almaty, Kazakhstan.

References

Kenzhaliyev B.K., Chukmanova M.T. Technologies for manufacturing individually developed Endoprostesis from titanium alloys. Proceedings of International scientific and practical conference “The Effective Technologies of Non-Ferrous, Rare and Precious Metals Manufacturing” devoted to the metallurgy science and industry concerns and in memory of well- known scientist of metallurgy, Associate Member of the National Academy of Sciences of Kazakhstan, the honoree of the State Prize of the Republic of Kazakhstan Bulat Baltakayevich Beisembayev. Almaty, Kazakhstan, 2018. 364-367. (in Russ.). https://doi.org/10.31643/2018-7.36

Review of United States Air Force and Department of Defense Aerospace Propulsion Needs Committee on Air Force and Department of Defense, Aerospace Propulsion Needs, National Research Council. 2006. 90. https://doi.org/10.17226/11780 (in Eng.).

Sauthoff G. Intermetallics. - Weinheim; New York; Basel; Cambridge; Tokyo: VCH, 1995. 165. http://doi.org/10.1002/14356007.e14_e01.pub2 (in Eng.).

Dilip J.J.S., Miyanaji H., Austin Lassell, Tomas L. Star, Brent Stucker. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing. Defence Technology. 2017. 13. 72-76. https://doi.org/10.1016/j.dt.2016.08.001 (in Eng.).

Jozwik P., Polkowski W., and Bojar Z. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities. Materials. 2015. 8, 2537-2568. https://doi.org/10.3390/ma8052537 (in Eng.).

Lekatou A., Sfikas A.K., Petsa C., and Karantzalis A.E. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Aluminum Nickel - AlNi - S-Q 6.7 Aluminum Nickel - AlNi3 - S-Q 9.2Aluminum Nickel - Al3Ni2 - S-Q 1Aluminum Oxide - Al2O3 - S-Q 65N 4Intensity p/s01002003004005006007008009002 Theta4102030405060708090d=3.4776d=2.8479d=2.5517d=2.3778d=2.0849d=2.0224d=1.7399d=1.6012d=1.4044d=1.3738d=1.2609d=1.2339d=1.1695 Co Content. Metals. 2016. 6. 46. 2-23.https://doi.org/10.3390/met6030046 (in Eng.).

Geguzin Ya.E. Diffuzionnaya zona (Diffusion zone). Moscow: Nauka, 1979, 344. (in Russ.).

Kodentsov A.A., Bastin G. F., van Loo F.J.J. Application of Diffusion Couples in Phase Diagram Determination. Methods for Phase Diagram Determination (ed. Zhao J.-C.), Elsevier Science Ltd., Oxford, 2007. – Chapter 6. 222-245. https://doi.org/10.1016/B978-008044629-5/50006-9(in Eng.).

Aubakirova R.K., Mansurov Yu.N., Sukurov B.M., Ibraeva G.M. Mnogosloinaya struktura intermetallidov v diffusionnoi zone sistemy Al-Co (Multilayer structure of intermetallics in diffusion zone of Al-Co system). Kompleksnoe ispol’zovanie mineral’nogo syr’ya.2018. 1. 58-63. (in Russ.).

Saltykov S.A. Stereometricheskaya metallografiya. (Stereometric metallography) M.: Metallurgiya. 1976. 273. (in Russ.).

Grinberg B.A., Ivanov M.A. Intermetallidy Ni3Al i ТiAl: mikrostruktura, deformatsionnoe povedenie (Intermetallics Ni3Al and ТiAl: microstructure, deformation behaviour). Monografia. Yekaterinburg. NISO UrO RAN. –2002. 360.(in Russ.).

Tosha K. Influence of Residual Stresses on the Hardness Number in the Affected Layer Produced by Shot Peening. 2nd Asia-Pacific Forum on Precision Surface Finishing and Deburring Technology, Seoul, Korea, July, 2002. 48-54. (in Eng.).

Kositsyn S.V., Kositsyna I.I. Fazovye I strukturnye prevrasheniya v splavakh na osnove monoalyuminida nikelya (Phase and structural transformations in alloys based on nickel monoaluminide). Usp. Fiz. Met. 2008. 9. 195-258. (in Russ.).

Broitman E. Indent Hardness Measurements at Macro- Micro-, and Nanoscale: A Critical Overview. Tribol Lett. 2017. 65:23. 1-18. https://doi.org/10.1007/s11249-016-0805-5(in Eng.).

Kazantseva N.V. Materialy dlya vysokoskorostnykh transportnykh system (Materials for High-Speed Transportation Systems). Monografia. Yekaterinburg. URGUP. 2016. 163.(in Russ.).

Oh J., Lee W.C., Pyo S.G., Park W., Lee S., and Kim N.J. Microstructural Analysis of Multilayered Titanium Aluminide Sheets Fabricated by Hot Rolling and Heat Treatment. Metallurgical and Materials Transactions A. December 2002. 33. 3649-3659. https://doi.org/10.1007/s11661-002-0239-6(in Eng.).

Ibraeva G.M., Sukurov B.M., Mansurov Yu.N., Aubakirova R.K. Aluminiy men nikel diagrammasynyn diffuziya aimagyndagy kop kabatty kurylym (Multilayer Structure of Diffusion Zone in Diagram of Aluminium and Nickel). Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 2018. 2. 89-95 https://doi.org/10.31643/2018/445.10 (in Kaz.).

Ibraeva G. M., Sukurov B.M., Aubakirova R. K., Mansurov Yu. N. Intermetallics structure in diffusion zone for application in additive manufacturing. III International Conference on Innovations and development patterns in Technical and Natural Sciences. Berlin, Germany April 20, 2018. 15-21. https://doi.org/10.29013/III-Conf-Innov-PP-3-15-21 (in Eng.).

Predel B. (1991) Madelung O. (ed.) Springer Materials Al-Ti (Aluminum-Titanium) Landolt-Börnstein - Group IV Physical Chemistry 5A (Ac-Au – Au-Zr). 1991. 1-11. https://doi.org/10.1007/10000866_151 (in Eng.).

Predel B. (1991) Madelung O. (ed.) Springer Materials Al-Ni (Aluminum-Nickel) Landolt-Börnstein - Group IV Physical Chemistry 5A (Ac-Au – Au-Zr). 1991.1-5. https://doi.org/10.1007/10000866_125 (in Eng.).

Predel B. (1991) Madelung O. (ed.) Springer Materials Al-Co (Aluminum-Cobalt) Landolt-Börnstein - Group IV Physical Chemistry 5A (Ac-Au – Au-Zr). 1991. 1-2. https://doi.org/10.1007/10000866_97 (in Eng.).

Ponweiser N., Lengauer C.L., Richter K.W. Reinvestigation of phase equilibria in the system Al-Cu and structural analysis of the high-temperature phase η1-Al1-δCu. Intermetallics. 2011. 19(11). 1737-1746. https://dx.doi.org/10.1016/j.intermet.2011.07.007 (in Eng.).

Pogatscher S., Leutenegger D., Schawe J.E.K., Uggowitzer P.J., and Löffler J.F. Solid–solid phase transitions via melting in metals. Nat Commun. 2016. 1-6) https://dx.doi.org/10.1038/ncomms11113 (in Eng.).

Volodin V.N., Tuleushev YU.ZH. Razmernyj ehffekt, struktura i svojstva dvojnyh plenochnyh sistem. (Size effect, structure and properties of double film systems) Almaty: 2014. 245. (in Russ.).

Nussupov, K.K., Beisenkhanov, N.B., Beisembetov, I.K., Kenzhaliev, B.K., Seitov, B.Z., Dulatuly, E., Bakranova, D.I. The formation of TixNy and TaxNy-based diffusion barriers. Materials Today: Proceedings. 2017.4, 3. 4534-4541. https://doi.org/10.1016/j.matpr.2017.04.026

Downloads

Published

2019-01-10

How to Cite

Ibraeva, G., Sukurov, B., Aubakirova, R., Kalipekova М., & Zhunusova, S. (2019). Microstructural peculiarities of aluminides of nickel, titanium, and cobalt. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 308(1), 5–11. https://doi.org/10.31643/2019/6445.01