Investigation of degradation processes in perovskite under the influence of external factors
DOI:
https://doi.org/10.31643/2021/6445.36Keywords:
perovskite materials, degradation processes, encapsulation.Abstract
The article describes a number of new fundamental knowledge about mechanisms of degradation processes occurring in photoactive perovskite materials based on complex lead halides and solar cells based on them, modern methods and approaches to increasing the operational stability of perovskite photovoltaic devices are considered. The revealed paths of degradation processes occurring in complex metal halides (lead and tin) under the influence of light and elevated temperatures are important for further developments in the field of creating highly efficient and stable perovskite solar cells of a new generation. The investigated models of degradation are described both under the action of moisture and as a result of radiation ionization processes. The importance of solving the Dexter-Varley paradox, which takes into account the competition between the processes of displacement of IS0 states, as well as the delocalization of the resulting hole in the valence band, is emphasized. It was shown that by changing the force of pressure of the tape on the perovskite film, it was possible to achieve the maximum values of the light conversion efficiency of about 12.7%. It was found that the presence of charge carriers in the form of polarons can significantly affect the assessment of the degradation efficiency towards its increase. The data obtained can radically change the traditional ideas about the efficiency of photochemical reactions.
Downloads
References
Gerasimova L.G., Kuzmich Y.V., Shchukina E.S., Maslova M.V., Kiselev Y.G(2019), Mekhanoaktivatsiya –effektivnyy priyem dlya usovershenstvovaniya tekhnologii perovskita [The mechanical activation as an efficient method for the improvement of perovskitetechnology] //Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a = Complex Use of Mineral Resources.Volume 1, pp.12-19. https://doi.org/10.31643/2019/6445.02 (In Rus.).
Roesch, R. Procedures and practices for evaluating thin-film solar cell stability / R. Roesch, T. Faber, E. von Hauff, T.M. Brown, M. Lira-Cantu, H. Hoppe // Adv. Energy Mater. –2016. –V.5. –P.1501407.
Leguy, A. M. A. Reversible Hydration of CH3NH3PbI3in Films, Single Crystals, and Solar Cells / A. M. A. Leguy, Y.Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, P. R. F. Barnes //Chem. Mater. –2015. –V.27. –P.3397-3407.
Philippe, B. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—a photoelectron spectroscopy investigation / B. Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E.M.J. Johansson, H. Rensmo //Chem. Mater.–2015. –V.27. –P.1720-1731.
Xiao, Z. Giantswitchable photovoltaic effect in organometal trihalide perovskite devices / Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang // Nat. Materials–2014 –V.14. –P.193-198.
Merdasa, A. Super-Resolution Luminescence Microspectroscopy Reveals the Mechanism of Photoinduced Degradation in CH3NH3PbI3Perovskite Nanocrystals / A. Merdasa, M. Bag, Y. Tian, E. Källman, A. Dobrovolsky, I. G. Scheblykin // J. Phys. Chem. C. 2016. –V.120. –P.10711-10719.
Agmon N. The Grotthuss mechanism // Chem. Phys. Lett.1995. V. 244, N 5–6. P. 456—462. https://doi.org/10.1016/0009-2614(95)00905-J
Frost J. M., Butler K. T., Brivio F., Hendon Ch. H., van SchilfgaardeM., Walsh A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells // Nano Lett.2014. V. 14, N5. P. 2584—2590. https://doi.org/10.1021/nl500390f
Schoonman J. Organic-inorganic lead halide perovskite solar cell materials: A possible stability problem//Chem. Phys. Lett.2015. V. 619. P. 193-195. https://doi.org/10.1016/j.cplett.2014.11.063
Oksengendler B. L., Ismailova O. B., Marasulov M. B., Urolov Z. On the degradation mechanism of functioning solar cells based on organic-inorganic perovskites // Appl. Solar Energy.2014. V. 50, N 4. P. 255—259. https://doi.org/10.3103/S0003701X14040100
Kemelzhanova A., Mukasev K., Yar-Mukhamedova G., Lampke Th. (2020), Investigation of the anticorrosion properties of nano-СЕСin amine environments // Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ = Complex Use of Mineral Resources. Volume 2, issue 313, pp. 52-57. https://doi.org/10.31643/2020/6445.17
Leijtens, T. Overcoming ultraviolet light instability of sensitized TiO2 with mesosuperstructured organometal tri-halide perovskite solar cells / T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith // Nat. Commun.–2013. –V.4. –P.2885.
Ved’ M., Yermolenko I., Karakurkchi, A., Kemelzhanova, A.Effect of electrodeposition parameters on the composition and surface topography of nanostructured coatings by tungsten with iron and cobalt// Eurasian Chemico-Technological Journal,2020, 22(1), стр. 19–25
Yar-Mukhamedova, G.S., Darisheva, A.M., Yar-Mukhamedov, E.S.Adsorption of the Components of a Chrome-Plating Electrolyte on Dispersed Corundum Particles// Materials Science, 2019, 54(6), стр. 907–912
Kemelzhanova A.,Zhamanbayeva G.,Zakhidov, A.et.al. Nanostructural perostrovskite for photovoltaics //International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM,2020,2020-August(4.1),стр. 113–120.
Zhamanbayeva, G.,Belissarova, F.et.al.Nanoimprinted hybrid perovskite metasurfaces with improved emission Kurmangaliyeva, V.,Nurbakova, G.,Taukenova, A.n //International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM,2020,р. 107–112.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Zakhidov, A., Zhamanbayeva, G., Yar-Mukhamedova, G.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.