Adsorption methods for the extraction and seperation of rare earth elements. Review

Authors

  • T.K. Jumadilov JSC “A.B. Bekturov Institute of Chemical Sciences”, Almaty, Kazakhstan
  • Kh. Khimersen Abai Kazakh National Pedagogical University, Almaty, Kazakhstan
  • B. Totkhuskyzy Kazakh National Women's Teacher Training University, Almaty, Kazakhstan
  • J. Haponiuk Gdansk University of Technology, Gdansk, Poland

DOI:

https://doi.org/10.31643/2021/6445.24

Keywords:

rare earth elements, adsorption, adsorbent, hydrogel, molecular polymers.

Abstract

 Rare earth elements play an important role in the production, energy, and high technology. Due to the rapid development of industry, the demand for rare earth metals is rising every day. Therefore, it is necessary to improve the extraction of rare earth metals from various sources to meet the demand for these elements. Currently, pyro- and hydrometallurgical technologies are used to extract rare earth metals from an ore and other secondary sources (industrial wastewater, acid drainage mines, etc.). Hydrometallurgical technologies include precipitation, extraction, adsorption, and ion exchange methods. Adsorption is one of the most effective methods for the extraction and separation of rare earth elements. Adsorption methods are highly selectivity to metal ions and have low emissions. However, not all adsorbents are effective in producing the same metal ions. This study provides an overview of the different adsorbents that can be used to extract rare earth elements from aquatic systems. Hydrogels and molecular polymers have been found to be cost-effective methods for high-grade rare earth metals. Further research is needed to ensure the performance of these systems.

Downloads

Download data is not yet available.

Author Biographies

T.K. Jumadilov, JSC “A.B. Bekturov Institute of Chemical Sciences”, Almaty, Kazakhstan

Doctor of Chemical Sciences, Professor, Chief Researcher at JSC “A.B. Bekturov Institute of Chemical Sciences”, Academician of the Russian Academy of Natural History, Almaty, Kazakhstan.

Kh. Khimersen, Abai Kazakh National Pedagogical University, Almaty, Kazakhstan

PhD student at Abai Kazakh National Pedagogical University, Almaty, Kazakhstan.

B. Totkhuskyzy, Kazakh National Women's Teacher Training University, Almaty, Kazakhstan

PhD student at Kazakh National Women's Teacher Training University, Almaty, Kazakhstan.

J. Haponiuk, Gdansk University of Technology, Gdansk, Poland

Full professor, Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.

References

Atwood, D. A.(2012).The Rare Earth Elements: Fundamentals andApplications//Wiley: New York

Jyothi R., Thenepalli T., Ahn J., Parhi P., Chung K., Lee J. (2020).Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste//Journal of Cleaner Production, 267 (in Eng). https://doi.org/10.1016/j.jclepro.2020.122048

Pecht M.G., Kaczmarek R.E., Song X., Hazelwood D.A., Kavetsky R.A., Anand D.K.(2012).Center for Energetic Concepts Development Series Southern Maryland, ML, USA, 184 (in Eng).

Haque N., Hughes A., Lim S., Vernon C.(2014).Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact // Resources 3, 614, (in Eng). https://doi.org/10.3390/resources3040614

Ganguli R., Cook D.R.(2018).MRS Ener. Sustain. 5 (in Eng). https://doi.org/10.1557/mre.2018.7

Jordens, A., Cheng, Y.P., Waters, K.E. (2013.) A review of the beneficiation of rare earth element bearing minerals // Miner. Eng. 41, 97–114 (in Eng).

Gupta, C.K., Krishnamurthy, N. (2005).Extractive Metallurgy of Rare Earths // CRC press, NY, USA (in Eng).

Kenzhaliyev B. K., Surkova T.Yu., Yessimova D. M. (2019). Concentration of rare-earth elements by sorptionfrom sulphate solutions // Complex use of mineral raw materials. No3, 5-9, (in Eng). https://doi.org/10.31643/2019/6445.22

Kenzhaliyev B. K. (2019). Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Complex use of mineral raw materials. No3, 64-75, (in Eng). https://doi.org/10.31643/2019/6445.30

Kumari, A., Panda, R., Jha,M.K., Kumar, J.R., Lee, J.Y. (2015). Process development to recover rare earth metals from monazite mineral: a review // Miner. Eng. 79,102–115. (in Eng).

Syed S. (2012).Recovery of gold from secondary sources—a review // Hydrometallurgy, 115–116, 30–51 (in Eng).

Van Nguyen N., Iizuka A., Shibata E., Nakamura T. (2016).Study of adsorption behavior of a new synthesized resin containing glycol amic acid group for separation of scandium from aqueous solutions // Hydrometallurgy,165, 51-56. (in Eng). https://doi.org/10.1016/j.hydromet.2015.11.016

Ochsenkühn-Petropulu M., Lyberopulu T., Parissakis G. (1995). Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method // Anal. Chim. Acta. 315,231–237. (in Eng).

Miao T., Qiong J.,Wuping L.(2013).Studies on synergistic solventextraction of rare earth elements from nitrate medium by mixtures of 8-hydroxyquinolinewith cyanex301 or cyanex 302 // J. Rare Earths 31,604–608 (in Eng).

Li D.Q., Wang C. (1998).Solvent extraction of scandium (III) by cyanex 923 and cyanex 925 // Hydrometallurgy 48,301–312. (in Eng). https://doi.org/10.1016/S0304-386X(97)00080-7

Naganawa H., Shimojo K., Mitamura H., Sugo Y., Noro J., Goto M. (2007).A new“green”extractant of the diglycolamic acid type for lanthanides // Solvent Extraction Research and Development, Japan 14,151–160. (in Eng).

AnastopoulosI., BhatnagarA., Lima E. C. (2016). Adsorption of RareEarth Metals: A Review of Recent Literature//J. Mol. Liq., 221, 954–962. (in Eng).

Rozelle P. L., Khadilkar A. B., Pulati N., Soundarrajan N.,Klima M. S.,Mosser M. M., Miller C. E., Pisupati S. V. (2016). A Study on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange // Metall. Mater. Trans. E. 3(1), 6–17. (in Eng).

Barros O., Costa L., Costa F., Lago A., Rocha V., Vipotnik Z., Silva B., Tavares T. (2019). Recovery of Rare Earth Elements from Wastewater towards a Circular Economy // Molecules. 24(6), 1005 (in Eng).

Abdel-Magied A. F., Abdelhamid H. N., Ashour R. M., Zoud X., Forsberg K. (2019). Hierarchical Porous Zeolitic Imidazolate Frameworks Nanoparticles for Efficient Adsorption of Rare-earth Elements // Micro. Meso. Mater.278, 175–184. (in Eng). https://doi.org/10.1016/j.micromeso.2018.11.022

Callura J. C., Perkins K. M., Noack C. W., Washburn N. R., Dzombak D. A., Karamalidis A. K. (2018). Selective Adsorption of Rare Earth Elements onto Functionalized Silica Particles // Green Chem.20(7), 1515–1526. (in Eng). https://doi.org/10.1039/C8GC00051D

Xu X., Zou J., Teng J., Liu Q., Jiang X. Y., Jiao F. P., Yu J. G., Chen X. Q. (2018). Novel High-gluten flour Physically Cross-linked Graphene Oxide Composites: Hydrothermal Fabrication and Adsorption Properties for Rare Earth Ions // Ecotox. Environ. Safe.166, 1010. (in Eng). https://doi.org/10.1016/j.ecoenv.2018.09.062

Babu C. M., Binnemans K., Roosen J. (2018). EDTA-Functionalized Activated Carbon for the Adsorption of Rare Earths from Aqueous Solutions // Ind. Eng. Chem. Res. 57(5), 1487–1497. (in Eng). https://doi.org/10.1021/acs.iecr.7b04274

Feng Y., Sun H., Hand L., Xue L., Chen Y., Yang L., Xing B. (2019). Fabrication of Hydrochar Based on Food Waste (FWHTC) and its Application in Aqueous Solution Rare Earth Ions Adsorptive Removal: Process, Mechanisms and Disposal Methodology // J. Clean. Prod. 212, 1423–1433. (in Eng). https://doi.org/10.1016/j.jclepro.2018.12.094

Yin C., ArouaM., Daud W. (2007).Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions // Sep. Purif. Technol. 52,403, (in Eng). https://doi.org/10.1016/j.seppur.2006.06.009

Chand Bansal R., Goyal M. (2005). Activated Carbon Adsorption // CRC Press, Boca Raton, FL,487 (in Eng).

Kano N., Pang M., Deng Y., Imaizumi H. (2017).Adsorption of Rare Earth Elements (Rees) onto Activated Carbon Modified with Potassium Permanganate (KMno4) // J. Appl. Sol. Chem. Model.6, 51–61. (in Eng). https://doi.org/10.6000/1929-5030.2017.06.02.1

Iannicelli-Zubiani E. M., Stampino P. G., Cristiani C., Dotelli G. (2018). Enhanced Lanthanum Adsorption by Amine Modified Activated Carbon // Chem. Eng. J. 341, 75–82. (in Eng). https://doi.org/10.1016/j.cej.2018.01.154

Hadjittofi L., Charalambous S., Pashalidis I.(2016).Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review // J. Rare Earths 34,99, (in Eng). https://doi.org/10.1016/j.molliq.2018.10.134

Westholm L.J., Repo E., Sillanpaa M. (2014).Filter materials for metal removal from mine drainage—a review // Environ. Sci. Pollut. Res 21, 9109 (in Eng).

Rinaudo M. (2006).Chitin and chitosan: properties and applications // Prog. Polym. Sci.31, 603–632, (in Eng). https://doi.org/10.1016/j.progpolymsci.2006.06.001

Zhang L., Zeng Y., Cheng Z. (2016).Removal of heavy metal ions using chitosan and modified chitosan: a review // J. Mol. Liq. 214,175–191 (in Eng).

Qiu, X., Shen, Y., Yang, R., Zhang, H., & Zhao, S. (2017). Adsorption of RE3+from aqueous solutions by bayberry tannin immobilized on chitosan// Environmental Technology, 1–8. (in Eng). https://doi.org/10.1080/09593330.2017.1384072

Roosen J., Binnemans K., (2014).Adsorption and chromatographic separation of rare earths with EDTA-and DTPA-functionalized chitosan biopolymers // J. Mater. Chem. A 2, 1530–1540, (in Eng). https://doi.org/10.1039/c3ta14622g

Bai R., Yang F., Zhang Y., Zhao Z., Liao Q., Chen P., Zhao P., Guo W., Cai C. (2018). Preparation of Elastic Diglycolamic-acid Modified Chitosan Sponges and Their Application to Recycling of Rare-earth from Waste Phosphor Powder // Carbohydr. Polym. 190, 255–261. (in Eng). https://doi.org/10.1016/j.carbpol.2018.02.059

Ramasamy D. L., Wojtuś A., Repo E., Kalliola S., Srivastava V., Sillanpaa M. (2017). Ligand Immobilized Novel Hybrid Adsorbents for Rare Earth Elements (REE) Removal from Waste Water: Assessing the Feasibility of Using APTES Functionalized Silica in the Hybridization Process with Chitosan // Chem. Eng. J. 330, 1370–1379. (in Eng). https://doi.org/10.1016/j.cej.2017.08.098

BulgariuL,.BulgariuD. (2018). Functionalized soy waste biomass-A novel environmental-friendly biosorbent for the removal of heavy metals from aqueoussolution// Journa of Cleaner Production, 197,875-885. https://dx.doi.org/10.1016/j.jclepro.2018.06.261 (in Eng).

Asadollahzadeh,M.,Torkaman,R.,&Torab-Mostaedi,M.(2020).Extraction and Separation of Rare Earth Elements by Adsorption Approaches: Current Statusand Future Trends//Separation & Purification Reviews,1–28. (in Eng). https://doi.org/10.1080/15422119.2020.1792930

Shalla,A.H.,Yaseen,Z.,Bhat,M.A.,Rangreez,T.A.,&Maswal,M.(2018). Recent review for removal of metalionsbyhydrogels. Separation Scienceand Technology,1–12. (in Eng). https://doi.org/10.1080/01496395.2018.1503307

Ferfera-Harrar H., Aiouaz N., Dairi N. (2015). Synthesis and properties of chitosan graft-polyacrylamide/gelatin superabsorbent composites for wastewater purification // Chem. Mole. Eng. 9 (7), 849-856 (in Eng).

Zhu Y.,Wang W.,Zheng Y.,Wang F.,Wang A. (2016). Rapid Enrichment of Rare-earth Metals by Carboxymethylcellulose-based Open-cellular Hydrogel Adsorbent from HIPEs Template// Carbohydr. Polym. 141, 51–58. (in Eng). https://doi.org/10.1016/j.carbpol.2015.12.003

Zay O., Ekici S., Aktas N., Sahiner N.P (2011).(4-vinyl pyridine) hydrogel use for the removal of UO2+ and Th4+from aqueous environments//Journal of Environ.Manag., 92: 3121. (in Eng). https://doi.org/10.1016/j.jenvman.2011.08.004

Jumadilov T., Abilov Zh., Kondaurov R., Himersen H., Yeskalieva G., Akylbekova M., Akimov A. Influence of hydrogels initial state on their electrochemical and volume-gravimetric properties in integral system polyacrylic acid hydrogel and poly-4-vinylpyridine hydrogel // Chem.Сhem. Technol. Vol. 9, No. 4, 2015 (in Eng).

Kondaurov R. G., Khimersen Kh.,Yeskalieva G.K.,Khakimjanov S.A. (2018).Anomalnaya sorbsya ionov lantana vzaimno activirovannymy hydrogelyamy polymetacrylovoi kisloty i poly-4-vinilpiridina pri ikh distansionnom vzaimnodeistvii [Abnormal sorption of lanthanum ions by mutually activated hydrogels of polymethacrylic acid and poly-4 vinylpyridine during their remote interaction]// Chimiya I chimicheskaya technology v XXI veke: materialy XIX Mejdunarodnoi nauchno-prakticheskoikonferensii studentov I molodykh uchenukh imeni professora L. P. Kuleva[Chemistry and chemical technology in the XXI century: materials of the XIX International Scientific and Practical Conference of Students and Young Scientists named after Professor L.P. Kulev], Tomsk: izd-vo TPU, 523-524 (in Russ).

Jumadilov T. K., Kondaurov R. G. (2018). Self-organization of polymer hydrogels of polyacrylic acid in integrel systems in cerium ions sorption process //Khim. Zh.Kazakhstana, 2 (62), 254-262 (in Eng).

Jumadilov T., Kondaurov R., ImangazyA.,Myrzakhmetova N., Saparbekova I. (2019). Phenomenon of remote interaction and sorption ability of rare cross-linked hydrogels of polymethacrylic acid and poly-4-vinylpyridine in relation to erbium ions//Chem. Chem. Technol.,13, 4, 451–458, (in Eng). https://doi.org/10.23939/chcht13.04.451

Jumadilov T.K., Abilov Zh.A., Kondaurov R.G. (2015). Intergel systems in recovery of precious and rare earth metals //Intern.journal of applied and fundamental research, No. 1, URL: http://www.science-sd.com/460-24777 (in Eng).

Uzun L.,TurnerA.P.F. (2016).Molecularly-imprinted polymer sensors: realising their potential//Biosensors and Bioelectronics, 76: 131–144 (in Eng).

CulverH. R., Peppas N. A. (2017). Protein-Imprinted Polymers: The Shape of Things to Come? // Chemistry of Materials, 29(14),5753–5761. (in Eng). https://doi.org/10.1021/acs.chemmater.7b01936

Ye L., Mosbach K. (2001). Polymers recognizing biomolecules based on a combination of molecular imprinting and proximity scintillation: a new sensor concept//J. Am. Chem. Soc. 123, 2901 (in Eng).

Zhang L., Cheng G., Fu C. (2003). Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization//React. Funct. Polym. 56, 167 (in Eng).

Taher A., Somaye A. (2013). Synthesis of nano-sized Eu3+-imprintedpolymer and itsapplication for indirect voltammetricdetermination of europium // Talanta, 106,431 (in Eng).

Gao B.J., Zhang Y.Q., Xu Y. (2014).Study on recognition andseparation of rare earth ionsat picometre scale by usingefficient ion-surface imprinted polymer materials //Hydrometal.150,83-91 https://doi.org/10.1016/j.hydromet.2014.09.017 (in Eng).

Ibrahim D., Rustem K., Deniz H., Arzu E., Rıdvan S. (2015). Ionimprintedpolymers forselective recognition of neodymium(III) in environmental samples // Ind. Eng.Chem. Res.,54, 5328 (in Eng).

Fu J.Q., Wang X.Y., Li J.H., Ding Y.J., Chen L.X. (2016). Synthesisof multi-ion imprintedpolymers based on dithizone chelationfor simultaneous removal of Hg2+, Cd2+,Ni2+and Cu2+from aqueous solutions // RSC Adv.6,44087 (in Eng).

Wang J.J, Wei J., Li J. (2016). Straw-supported ion imprinted polymer sorbent preparedbysurface imprinting techniquecombined with AGET ATRP for selectiveadsorptionofLa3+ions // Chem. Eng. J., 293, 24 (in Eng).

Liu Y., Qiu J., Jiang Y.H., Liu Z.C., Meng M.J., Ni L., Qin C. C., Peng J.B. (2016). Selective Ce(III) ion-imprinted polymergrafted on Fe3O4 nanoparticles supportedby SBA-15mesopores microreactor via surface-initiated RAFT polymerization //Microporous Mesoporous Mater., 234, 176 (in Eng).

Gong C.,Li Z.,Liu L.,Wei Y., Yang X.,ChowC.,Tang Q.(2017). Photocontrolled extraction of uric acid from biologicalsamples based onphotoresponsive surface molecularly imprintedpolymer microspheres // J. Sep. Sci.40, 1396−1402 (in Eng).

Yusoff M. M., Mostapa N. R. N., Sarkar M. S., Biswas T. K., Rahman M. L., Arshad S. E., Sarjadi M. S., Kulkarni A. D. (2017).Synthesis of Ion Imprinted Polymers for Selective Recognition and Separation of Rare Earth Metals. //J. Rare Earths. 35(2), 177–187. (in Eng). https://doi.org/10.1016/S1002-0721(17)60897-4

DolakI., Kecili R., Hür D., Ersöz A., Say R. (2015). Ion-Imprinted Polymers for Selective Recognition of Neodymium(III) in Environmental Samples//Ind. Eng. Chem. Res. 54, 5328−5335. (in Eng). https://doi.org/10.1021/acs.iecr.5b00212

Jumadilov T.K., Imangazy A.M., Kondaurov R.G., KhimersenH. (2020). Synthesis of Molecular Imprinted Polymers for Metal Ions Sortion //International Scientific Conference, CHTABPublishing House “UNIVERSAL” Tbilisi, 133-139 (in Eng).

ShakerianF., KimK.H., Kwon E., Szulejko J. E., Kumar P., Dadfarnia S., Haji Shabani A. M. (2016). Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions // TrAC Trends in Analytical Chemistry, 83, 55–69. (in Eng). https://doi.org/10.1016/j.trac.2016.08.001

Ma J.,Wang Z., Shi Y., Li Q. (2014).Synthesis and characterization of lysine-modified SBA-15and its selective adsorption of scandium from a solution of rare earth elements,RSCAdv. 4, 41597–41604 (in Eng).

Jumadilov T.K., Kondaurov R.G. (2020). Innovasionnye funksionalnye soedinenie dlya primenenya v perspektivnykh tekhnologiyakh[Innovative functional compounds for use in advanced technologies]monografya [monograp]. Almaty, 3-34 (in Russ).

Downloads

Published

2021-07-14

How to Cite

Jumadilov Т., Khimersen, K., Totkhuskyzy, B., & Haponiuk, . J. (2021). Adsorption methods for the extraction and seperation of rare earth elements. Review. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 318(3), 12–23. https://doi.org/10.31643/2021/6445.24