Silicon Refining by Growing Crystallites in a Hypereutectic Melt of Aluminum with Silicon
DOI:
https://doi.org/10.31643/2025/6445.29Keywords:
silicon, aluminum, cluster, crystallite, liquation, crystallization.Abstract
Silicon is an essential chemical element that plays a very important role in life support on our planet. There is no single area of life on Earth where this most common chemical element is not present; its content is 27-30% of the mass of the Earth's crust. The most common form of its presence in the earth's crust is silicon dioxide, that is, silica. Silica is the main raw material source for semiconductor silicon for modern electrical engineering (production of diodes, transistors, photocells, and integrated circuits). Silicon is widely used in special materials science (alloying special steels, refining melts, and producing aluminum-silicon alloys (silumins). Reducing the cost of high-purity silicon can be achieved by reducing the temperature of the refining process of technical silicon. This scientific work examines the implementation of refining silicon in eutectic silicon melts with aluminum. Crystallization of silicon in hypereutectic melts below the liquidus temperature of the Si-Al phase equilibrium system occurs through the formation of silicon crystallization nuclei from clusters on the surface of the crystallizer - electrodes (rods) made of silicon with a temperature, which is below the temperature of the hypereutectic melt liquidus. The article describes methods for obtaining high-purity silicon and provides scientific justification for the implementation of such a task. The proposed method for producing high-purity silicon has so far been little studied and is of scientific and economic interest, since it can be carried out at relatively low temperatures, for example below 900°C. An important feature of eutectic melts is the stoichiometric content of components, which was the reason for the assumption of the molecular structure of eutectic melts. Eutectic molecules are, in our opinion, compounds of silicon and aluminum clusters.
Downloads
References
Lyakishev N P. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem: Spravochnik [State diagrams of binary metallic systems: Handbook]. V 3-kh t. Moskva, Mashinostroenie [In 3 volumes. Moscow, Mechanical Engineering]. 1996, 996. (In Russ.).
He Q, Wen J, Yang G, Xu F, Xu M, Chen Z. Impurity Aluminum Removal in Industrial Silicon by CaO-SiO2-CaF2 Slagging Refining. Silicon. 2023; 15:5445-5453. http://dx.doi.org/10.1007/s12633-023-02453-z
Zhang ZH, Bian XF, Wang Yajun, Liu Xiangfa Refinement and thermal analysis of hypereutectic Al-25%Si alloy. Transactions of Nonferrous Metals Society of China. 2001; 11:374-377.
Piątkowski J. Influence of Overheating Temperature on the Shape of Primary Silicon Crystals in Hypereutectic Al-Si Cast Alloys. Solid State Phenomena. 2013; 203-204:417-422. http://dx.doi.org/10.4028/www.scientific.net/ssp.203-204.417
Eremin VP. Rafinirovanie tekhnicheskogo kremniya. Materialy soveshchaniya Si-2004 [Refining of technical silicon. Materials of the meeting SI-2004]. Irkutsk: Publishing House of the Institute of Geochemistry SB RAS. 2004, 27-34. (In Russ.).
Cao J, Yang D, Wu J, Gu H, Cai X, Zeng Y. Study on Oxidization and Mass Transfer of Al from Si-Al Melt Using Top Oxygen Blowing Refining. Silicon. 2022; 14:9805-9812. http://dx.doi.org/10.1007/s12633-022-01672-0
Nemchinova NV. Povedenie primesnykh elementov pri proizvodstve i rafinirovanii kremniya [Behavior of impurity elements during the production and refining of silicon]. Monograph. M.: Publishing House Academy of Natural Sciences. 2008, 237. (In Russ.).
Calvo-Dahlborg M, Popel PS, Kramer MJ, Besser M, Morris JR, Dahlborg U. Superheat-dependent microstructure of molten Al–Si alloys of different compositions studied by small angle neutron scattering. Journal of Alloys and Compounds. 2013; 550:9-22. http://dx.doi.org/10.1016/j.jallcom.2012.09.086
Bührig-Polaczek A, Michaeli W, Spur G. Handbuch Urformen. 2013. http://dx.doi.org/10.3139/9783446434066
Gribov BG, Zinov'ev KV. Poluchenie vysokochistogo kremniya dlya solnechnykh elementov [Obtaining high-purity silicon for solar cells]. Inorganic, material. 2002; 39(7):775-785. (In Russ.).
Pat.1857412 JP. Tokumaru Sh, Okazawa K, Kondo J, Okajima M. Silicon refining method. 2007.
Pat. 2648436 RU. Andreev SP, Udalov YuP, Lavrov BA, Lavrov NN, Serzhanov GM. Sposob polucheniya poroshka kremniya vysokoi chistoty iz smesi dioksida kremniya i alyuminiya [A method for producing high-purity silicon powder from a mixture of silicon dioxide and aluminum]. 2018. (In Russ.).
Pat. 2237616 RU. Karabanov SM, Trunin EB, Prikhod'ko VV. Sposob polucheniya kremniya solnechnogo kachestva [Method for producing solar grade silicon]. 2004. (In Russ.).
Pat. 2159213 RU. Abdyukhanov IM, Abdyukhanov MA, Kuz'min YuA, Merkushkin VM. Sposob ochistki kremniya i ustroistvo dlya ego osushchestvleniya [Method for cleaning silicon and device for its implementation]. 2000. (In Russ.).
Nepomnyashchikh A I. Kremnii dlya solnechnoi energetiki [Silicon for solar energy]. Izv. Tomsk Polytechnic University. 2000; 303(2):175-190. (In Russ.).
Czochralski J. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Zeitschrift für Physikalische Chemie. 1918; 92U(1):219-221. http://dx.doi.org/10.1515/zpch-1918-9212
Ashuiko VA. Khimiya kompleksnykh soedinenii: kurs lektsii [Chemistry of complex compounds: a course of lectures]. Minsk: BGTU. 2011, 130. (In Russ.).
Brodova IG, Popel' PS, Esin VO. Morfologicheskie osobennosti struktury i svoistv zaevtekticheskogo silumina. [Morphological features of the structure and properties of hypereutectic silumin]. Fizika metallov i metallovedenie [Physics of metals and metallurgy]. 1988; 65(4):1149-1154. (In Russ.).
Marukovich EI, Stetsenko VYu, Stetsenko AV. Sovremennoye sostoyaniye teorii kristallizatsii metallicheskikh rasplavov [Current state of the theory of crystallization of metal melts]. Lit'ye i metallurgiya [Casting and metallurgy]. 2022; 12;(1):19-24. (In Russ.). http://dx.doi.org/10.21122/1683-6065-2022-1-19-24
Bolshakov VI, Vorobiev VM, Krivusha LS, Tyuterev IA, Rott NA. O klasternoi modeli metallicheskikh rasplavov [On the cluster model of metal melts]. Vestnik Pridneprovskoi gosudarstvennoi akademii stroitel'stva i arkhitektury [Bulletin of the Dnieper State Academy of Construction and Architecture]. 2008; 5:125-137. (In Russ.).
Filippov E.S. O vozmozhnom mekhanizme i posledovatel'nosti vozniknoveniya strukturnykh prevrashchenii v zhidkikh splavakh, gallii i indii [On the possible mechanism and sequence of occurrence of structural transformations in liquid melts, gallium and India]. Izvestiya Vysshikh uchebnykh zavedenii. Chernaya metallurgiya [News of Higher Educational Institutions. Ferrous metallurgy]. 1973; 9:124-129. (In Russ.).
Filippov E.S. Teoriya zhidkikh metallov, osnovannaya na predstavlenii sfer vzaimodeistviya [The theory of liquid metals based on the representation of the sphere of interaction]. Izvestiya Vysshikh uchebnykh zavedenii. Chernaya metallurgiya [News of Higher Educational Institutions. Ferrous metallurgy]. 1974; 7:101-110. (In Russ.).
Anbu G, Nagarajan SG, Aravindan G, Srinivasan M, Ramasamy P. Influence of Additional Insulation Block on Melt-Crystal Interface Shape in Directional Solidification System for Growing High Quality mc-Silicon Ingot: a Simulation Investigation. Silicon. 2021; 13:1713–1722. http://dx.doi.org/10.1007/s12633-020-00572-5
Presnyakov AA, Degtyareva AS, Aubakirova RK, Zhumartbaeva TV. Metallicheskie rasplavy, ikh zatverdevanie i kristallizatsiya [Metal melts, their solidification and crystallization]. Almaty: Gylym. 1994, 208. (In Russ.).
Shakhnazarov KYu. Priznaki promezhutochnykh faz v sistemakh Al-Si, Fe-C i Al-Cu [Signs of intermediate phases in Al-Si, Fe-C and Al-Cu systems]. Bulletin of MSTU named after G.I. Nosova. 2016; 14(3):72-77. (In Russ.).
Presnyakov AA, Degtyareva AS, Aubakirova RK, Zhumartbaeva TV. Metallicheskie rasplavy, ikh zatverdevanie i kristallizatsiya [Metal melts, their solidification and crystallization]. Almaty: Gylym. 1994, 208. (In Russ.).
Petrov SC, Prigunova AG, Prigunov SV. Struktura zaevtekticheskikh siluminov pri modifitsirovanii rasplavov elektricheskim tokom [Structure of hypereutectic silumins during modification of melts by electric current]. Scientific information magazine MITOM. 2007; 1:43-52. (In Russ.).
Ershov GS, Chernyakov VA. Stroenie i svoistva zhidkikh i tverdykh metallov [Structure and properties of liquid and solid metals]. Moskva: Metallurgiya. 1978, 248. (In Russ.).
Voronkov VV. Aggregation of Point Defects in Silicon Crystals Growing from the Melt. Growth of Crystals. 1992; 18:157-167. http://dx.doi.org/10.1007/978-1-4615-3268-2_14
Velyukhanov VP, Arkharov VI. Fizika metallov i metallovedenie [Physics of metals and metallurgy]. 1972; 33(2):303-307. (In Russ.).
Prigunova AG, Mazur VI, Taran Yu N. Issledovanie struktury zhidkikh splavov Al-Si [Study of the structure of liquid Al-Si]. Zaevtekticheskie rasplavy. Metallofizika [Hypereutectic melts. Metal physics]. 1983; 5(1):88-94. (In Russ.).
Spur G, Michaeli W, Bührig-Polaczek A. Handbuch Urformen. 2014. http://dx.doi.org/10.1007/978-3-446-43406-6
Degtyareva AS, Dzhanysbaeva TA, Aubakirov EG, Khafizov EB, Khodareva TA. Strukturnye urovni metallicheskikh rasplavov [Structural levels of metal melts]. Tsvetnye metally [Non-ferrous metals]. 2006; 1:83-87. (In Russ.).
Dahlborg U, Kramer M.J, Besser M, Morris JR, Calvo-Dahlborg M. Structure of molten Al and eutectic Al–Si alloy studied by neutron diffraction. Journal of Non-Crystalline Solids. 2013; 361:63-69. http://dx.doi.org/10.1016/j.jnoncrysol.2012.10.027
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Protopopov, A., Protopopov, M., Suleimenov, E., & Altynbekov, R.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.