Effect of microarc oxidation on the properties of aluminum alloy samples

Authors

  • Zh.M. Ramazanova S.Seifullin Kazakh Agro Technical University; JSC "National Center for Space Research and Technology"
  • M.G. Zamalitdinova JSC "National Center for Space Research and Technology"
  • M.Zh. Baidauletova S.Seifullin Kazakh Agro Technical University
  • M.V. Kovalenko L.N. Gumilyov Eurasian National University

DOI:

https://doi.org/10.31643/2023/6445.16

Keywords:

valve metals, plasma electrolytic oxidation, microplasma discharges, oxide coating, microhardness, transition layer.

Abstract

Currently, modern manufacturing industries impose special requirements on structural materials such as aluminum, titanium, and their alloys. Various methods are used to improve the physicomechanical and corrosion properties of these materials. One of the promising ways to modify the surface in order to give it multifunctional properties is the treatment of micro-arc oxidation. A distinctive feature of the process is the formation of the oxide coatings on valve metals because of exposure to micro-arc discharges. At the same time, coatings with unique properties are formed. However, the effect of the micro-arc oxidation process on the properties of the base material has been little studied. The purpose of this work is to study the effect of the micro-arc process, implemented in pulsed mode, on the properties of oxide layers, and the base material. Modification of the alloy surface was carried out in the anode mode, with small values of the duration of the anode current pulse. An alkaline electrolyte solution was used as the electrolyte. Studies of the microhardness of the oxide layer, as well as the metal layer from the interface – oxide layer /metal deep into the metal, have shown that micro-arc discharges affect not only the properties of the oxide layer but also structural changes in the thickness of the metal. It is shown that the formed oxide coating is characterized by high microhardness. The oxide coatings obtained at the duration of the anode current pulse of 100 µs – 200 µs are wear-resistant, the coatings do not collapse, and do not wear to the ground under the accepted test conditions

Downloads

Download data is not yet available.

Author Biographies

Zh.M. Ramazanova, S.Seifullin Kazakh Agro Technical University; JSC "National Center for Space Research and Technology"

Candidate of Chemical Sciences, Associate Professor of S. Seifullin Kazakh Agro Technical University, 010000, ave. Zhenis 62, Nur-Sultan, Kazakhstan;  Head of the Space Monitoring Center Nur-Sultan city, JSC "National Center of Space Research and Technology", 010000, Turan Ave., 89, Nur-Sultan, Kazakhstan.

M.G. Zamalitdinova, JSC "National Center for Space Research and Technology"

Master of Information Systems, Researcher at the Space Monitoring Center Nur-Sultan city, JSC "National Center of Space Research and Technology", 010000, Turan Ave., 89,  Nur-Sultan, Kazakhstan.

M.Zh. Baidauletova, S.Seifullin Kazakh Agro Technical University

Master's degree, Assistant of S. Seifullin Kazakh Agrotechnical University, 010000, ave. Zhenis 62, Nur-Sultan, Kazakhstan,

M.V. Kovalenko, L.N. Gumilyov Eurasian National University

Master student of L.N. Gumilyov Eurasian National University, 010000, st. Satbaeva 2, Nur-Sultan, Kazakhstan.

References

Mikheev AE, Girn AV, Yakubovich IO, Rudenko MS. Spraying plasmatron coatings with powder supply to plasma flow. Siberian Aerospace Journal. 2021;22(1):194-200. https://doi.org/10.31772/2712-8970-2021-22-1-194-200

Trifonov GI, ZHachkin SYU. Matematicheskoe modelirovanie tekhnologii plazmennogo napyleniya [Mathematical modeling of plasma spraying technology]. Nauchno-metodicheskij elektronnyj zhurnal «Koncept» = Scientific and methodological electronic journal "Concept". 2017;2:342-346. http://e-koncept.ru/2017/570071.htm (in Russ.).

Kravchenko IN, Kolomejchenko AV, Bogachev BA, Glinskij MA. Sovershenstvovanie plazmennyh metodov naneseniya pokrytij v processah vosstanovleniya i uprochneniya detalej pererabatyvayushchego oborudovaniya [Improvement of Plasma Coating Methods in Processes of Recovery and Hardening of Parts of Processing Equipment]. Innovacii v APK: problemy i perspektivy = Innovations in the agro-industrial complex: problems and prospects. 2019;2(22):49-60. https://www.elibrary.ru/item.asp?id=38567259 (in Russ.).

Denisov VV, Koval' NN, Denisova YUA, Vardanyan EL, Ostroverhov EV, Ignatov DYU, Leonov AA. Osobennosti generacii i tekhnologicheskogo ispol'zovaniya gazo-metallicheskih puchkovo-plazmennyh obrazovanij pri nizkom davlenii [Features of generation and technological use of gas-metal beam-plasma formations at low pressure]. Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov: sb. nauchnyh trudov. V 3 kn. Kn. 5. Tekhnologii i oborudovanie mekhanicheskoj i fiziko-tekhnicheskoj obrabotki / redkol.: V.G. Zalesskij (gl. red.) = Modern methods and technologies for the creation and processing of materials: Sat. scientific works. In 3 books. Book. 5. Technologies and equipment for mechanical and physical-technical processing / editorial board: V.G. Zalessky (editor-in-chief). Minsk: FTI NAN Belarusi. 2020, 282. ISBN 978-985-6441-62-5. (in Russ.).

Ramazanova ZhM, Zamalitdinova MG, Kovalenko MV.Investigation of the properties of oxide coatings on titanium alloys obtained by plasma electrolytic oxidation. Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex Use of Mineral Resources.2021;321(2):5-13. https://doi.org/10.31643/2022/6445

Siyuan Jin, Xiaochun Ma, Ruizhi Wu, Guixiang Wang, Jinghuai Zhang, Boris Krit, Sergey Betsofen, Bin Liu. Advances in micro-arc oxidation coatings on Mg-Li alloys. Applied Surface Science Advances.2022;8:1-20. https://doi.org/10.1016/j.apsadv.2022.100219

Mamaeva АА, Kenzhegulov АK, Panichkin АV, Shah A. Obtaining hydroxyapatite coatings by mechanochemical interaction. Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex Use of Mineral Resources.2020;3(314):76-83. https://doi.org/10.31643/2020/6445.29

Ramazanova ZhM, Zamalitdinova MG. Study of the Properties of Qxide Coatings Formed on Titanium by Plasma Electrolytic Oxidation Method. Eurasian Chemico-Technological Journal. 2020;22(1):51-58. https://doi.org/10.18321/ectj930

WeiZhanWang, ShunShan Feng, ZhongMing Li, ZhiGang Chen, TaiYong Zhao. Microstructure and properties of micro-arc oxidation ceramic films on AerMet100 steel. Journal of Materials Research and Technology. 2020;9(3):6014-6027. https://doi.org/10.1016/j.jmrt.2020.04.005

Ramazanova ZhM, Zamalitdinova MG, Kirgizbaeva KZh, Ahmed'yanov AU, Zhakupova AE. Issledovanie zashchitnyh svojstv pokrytij, poluchennyh metodom mikrodugovogo oksidirovaniya v shchelochnyh rastvorah elektrolitov [Investigation of the protective properties of coatings obtained by microarc oxidation in alkaline electrolyte solutions]. Perspektivnye materialy = Promising Materials. 2022;5:58-69. https://doi.org/10.30791/1028-978X-2022-5-58-68 (in Russ.).

Ren L, Wang N, Chen Zh, Li Yu, Qian L. Self-Lubricating PEO–PTFE Composite Coating on Titanium. Metals. 2019;9:170-181 https://doi.org/10.3390/met9020170

Xue Y, Pang X, Jiang B, Jahed H. Corrosion and corrosion fatigue performances of micro-arc oxidation coating on AZ31B cast magnesium alloy. Materials and Corrosion. 2018;70(2):1-13. https://doi.org/10.1002/maco.201810293

Siqi Liu, Jiahuan Chen, Dongdong Zhang, Yuxin Wang, Zhen He, Pingyi Guo. Properties of Micro-Arc Oxidation Coatingson 5052 Al Alloy Sealed by SiO2 Nanoparticles. Coatings. 2022;12(3):373. https://doi.org/10.3390/coatings12030373

Gnedenkov SV, Khrisanfova OV, Zavidnaya AG, Sinebrukhov SL. Production of Hard and Heat-Resistant Coatings on Aluminium using a Plasma Micro-Discharge. Surface and Coatings Technology. 2000;123(1):24-28. https://doi.org/10.1016/S0257-8972(99)00421-1

ShuhaoPeng, MuqinLi, JingyanWang, QinwenTian, SonggeWang, BiaoTang. Corrosion behavior and biological activity of micro-arc oxidation coating with puerarin on pure magnesium surface. Results in Physics. 2019;12:481-1489. https://doi.org/10.1016/j.rinp.2019.01.021

Liting Mu, Zhen Ma, Jingyan Wang, Shidan Yuan, Muqin Li. Corrosion Behavior and Biological Activity of Micro Arc Oxidation Coatings with Berberine on a Pure Magnesium Surface. Coatings. 2020;10:837. https://doi.org/10.3390/coatings10090837

Dmitry V Mashtalyar, Konstantine V Nadaraia, Andrey S Gnedenkov, Igor M Imshinetskiy, Mariia A Piatkova, Arina I Pleshkova, Evgeny A Belov, Valeriia S Filonina, Sergey N Suchkov, Sergey L Sinebryukhov, Sergey V Gnedenkov. Bioactive Coatings Formed on Titanium by Plasma Electrolytic Oxidation: Composition and Properties. Materials (Basel). 2020;13,18:4121. https://doi.org/10.3390/ma13184121

Yeshmanova GB, Smagulov DU, BlawertC. Tekhnologiya plazmennogo elektroliticheskogo oksidirovaniya dlyapolucheniya zashchitnykh pokrytiy alyuminiyevykh splavov [Plasma electrolytic oxidation technology for producing protective coatings of aluminum alloys]. Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex Use of Mineral Resources.2021;2(317):78-93. (in Russ.). https://doi.org/10.31643/2021/6445.21

Suminov IV, Epel'fel'd AV, Lyudin VB, Borisov AM, Krit BL. Mikrodugovoe oksidirovanie: Teoriya, tekhnologiya, oborudovanie [Microarc oxidation: Theory, technology, equipment]. Moscow: EKOMET.2005, 368. (in Russ.).

Mustafa Safa Yilmaz, Orhan Sahin. Investigation of High Energy Single Pulse Effect on Micro Arc Oxidation (MAO) Process on Aluminium. International Journal of Mining, Materials, and Metallurgical Engineering. 2019;5:1-6. https://doi.org/TBA

Riyad O Hussein, Xueyuan Nie, Derek O Northwood. Effect of current mode on the plasma discharge, microstructure and corrosion resistance of oxide coatings produced on 1100 aluminum alloy by plasma electrolytic oxidation. Wit transactions on engineering sciences. 2019;124:3-16. https://doi.org/10.2495/mc190011

Saltykov SA. Stereometricheskaya metallografiya [Stereometric metallography]. Moscow: Metallurgiya, 1970,375. (in Russ.).

Ramazanova ZhM, Zamalitdinova MG, Kovalenko MV. Investigation of the properties of oxide coatings on titanium alloys obtained by plasma electrolytic oxidation. Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex Use of Mineral Resources.2021;2(321):5-13. https://doi.org/10.31643/2022/6445.12

Bydnitskaia YuYu. Konstruirovaniye i tekhnologiya polucheniya oksidnykh pokrytiy s zadannymi fiziko-khimicheskimi svoystvami v impulsnom mikroplazmennom rezhime [Design and technology for obtaining oxide coatings with desired physical and chemical properties in a pulsed microplasma mode]. Avtoreferat dissertatsii na soiskaniye uchenoy stepeni kandidata tekhnicheskikh nauk = Abstract of the dissertation for the degree of candidate of technical sciences. Tomsk, Russia. 2003:12-14. (in Russ.).

Mamaeva VA, Mamaev AI, Dorofeeva TI, Bydnitskaia YuYu, Makarov AA. High Current Microplasma Processes for Modification of Titanium Alloys by Bioactive Ceramic Nanoporous Coatings. Proceedings of 7th International Conference on Modification of Materials with Particle Beams and Plasma Flows.Tomsk, Russia. 2004:343-345.

Mamaev AI, Mamaeva VA. Sil'notokovye processy v rastvorah elektrolitov [High Current Processes in Electrolyte Solutions]. Novosibirsk: SO RAN, 2005, 255. (in Russ.).

Koshuro VA, Nechayev GG, Lyasnikova AV. Vliyaniye plazmennykh protsessov formirovaniya pokrytiy na mekhanicheskiye kharakteristiki izdeliy iz titanovykh splavov. [Influence of plasma processes of coating formation on the mechanical characteristics of products made of titanium alloys.]. Uprochnyayushchiye tekhnologii i pokrytiya = Hardening technologies and coatings. 2013;10(106):18-22. (in Russ.).

Downloads

Published

2022-09-12

How to Cite

Ramazanova, Z., Zamalitdinova, M., Baidauletova, M., & Kovalenko, M. (2022). Effect of microarc oxidation on the properties of aluminum alloy samples. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 325(2), 39–46. https://doi.org/10.31643/2023/6445.16