Physical and mechanical properties investigation of oxide coatings on titanium
DOI:
https://doi.org/10.31643/2019/6445.14Keywords:
electrolytic plasma oxidation, oxide coating, frictional tests.Abstract
This paper studies the impact of rapidly flowing impulse effect of electrolytic plasma oxidation on physical and mechanical specifications of oxide coatings through the surface modification of VT1-0 titanium alloy. The present mode allows obtaining dense coatings with high mechanical properties. The electrolytic plasma oxidation process implementation leads to a micro arc-discharge emergency in a short period through the small duration values of 250 µs anodic impulse. The achieved oxide coatings have high wearing features. Frictional testing resulted in wearing features increase in 4-15 times comparing to the sample off coating at to15 µm oxide layer thickness. Friction coefficient curves of oxide coating samples have shown no destruction of the coating to the bottom. A run-in area is recognized on the curves; sliding surfaces adapt to each other and pass to the stable friction regime. The later leads to the friction coefficient reduce and wear intensity reduction.
Downloads
References
ShankarM. P.,SokkalingamR.,SivaprasadK., Veerappan Muthupandi. Effect of Electrolyte on Micro Arc Oxidation Coating of Al-2014 Alloy. Advanced Materials Research. 2018. 1148, 159-164. https://doi.org/10.4028/www.scientific.net/AMR.1148.159
KumarV.,Bhowmik, Shantanu. Plasma Processing of Aluminum Alloys to Promote Adhesion: A Critical Review.Reviews of Adhesion and Adhesives. 2017. 5, 1, 79-104. (in Eng.) https://doi.org/10.7569/raa.2017.097303
Jie Jin, Xiao-Han Li, Ji-Wen Wu, Bai-Yang Lou. Improving tribological and corrosion resistance of Ti6Al4V alloy by hybrid microarcoxidation/enameling treatments. Rare Metals.2018. 37, 1,26–34. (in Eng.) https://www.springerprofessional.de/en/raremetals/11828690
Mamaev A.I., Mamaeva V.A., Kolenchin N.F., Chubenko A.K., Koval`skaya Y.B., Konstantinova T.A., Dolgova Y.N., BeleckayaE.Y. Regularities of filamentary channels formation during formation of nanostructured non-metallic inorganic coatings in microplasma galvanostatic mode in solutions. Russian Physics Journal. 2016. 58, 12,1720-1725.(in Eng.) https://www.springer.com/physics/journal/11182
Koblova E.A., Ustinov A.Yu., Rudnev V.S., Lukiyanchuk I.V., Chernykh I.V. An X-ray photoelectron spectroscopy study of Ni, Cu-containing coatings formed by plasma electrolytic oxidation on aluminum and titanium.Journal of Structural Chemistry. 2017. 58, 6, 1129–1136. (in Eng.). https://rd.springer.com/article/10.1134/S0022476617060099
ZhiyuYa.,MantingM., Sun, BingS.,QiaominW.,YueH.,MiW. Effect of electrode oxide film in micro arc oxidation on water treatment. Journal of Advanced Oxidation Technologies. 2017. 20,1,190-197. (in Eng.). https://doi.org/10.1515/jaots-2016-0189
Kalita V. I., Mamaev A. I., Mamaeva V. A., Malanin D. A., Komlev D. I., Gnedovets A. G., Novochadov V. V., Komlev V. S., Radyuk A. A. Structure andshear strength of implantswith plasma coatings. Inorganic Materials: Applied Research 2016.7,3,376–387. (in Eng.). https://rd.springer.com/search?query=Inorganic+Materials%3A+Applied+Research
RamazanovaZh.M., KirgizbaevaK.J., ZamalitdinovaM.G, TkachevaI.P., ToleshA.G. Influence of regimes of plasma-electrolytic process on porosity and morphology of oxide coating // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a.2017. 2. 41-45. (in Eng.). http://kims-imio.kz/wp-content/uploads/2018/03/ilovepdf_com-43-47.pdf
Mikheyev A.E.,Girn A.V.,Orlova D.V.,Vakhteyev E.V.,Trushkina T.V. Vliyaniye tekhnologicheskikh parametrov na elementnyy sostav mikrodugovogo oksidirovaniya pokrytiy na alyuminiyevykh i titanovykh splavakh(Influence of technological parameters on the elemental composition of microarc oxidation of coatings on aluminum and titanium alloys). Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva=Bulletin of the Siberian State Aerospace University named after academician M.F. Reshetnev.2012. 4(44).168-172. (in. Russ.).. https://elibrary.ru/item.asp?id=18273939
Opra D.P., Gnedenkov S.V., Sinebryukhov S.L., Kuryavyi V.G. Electrochemical performances of nanostructured anatase TiO2synthesized by pulsed high-voltage discharge.Non-Ferous Metals. 2016. 40, 1,16–19. (in Eng.). https://www.springer.com/materials/special+types/journal/11981
Rudnev V.S., Vaganov-Vil’kins A.A., Nedozorov P.M. Characteristics of Plasma-Electrolytic Oxide Coatings Formed on Aluminum and Titanium in Electrolytes with Siloxane Acrylate and Particles of Vanadium, Boron, and Aluminum Oxides. Russian Journal of Applied Chemistry. 2018. 91,6, 942–947. (in Eng.). https://www.springer.com/materials/special+types/journal/11981
Mamayev A.I.,Ramazanova Zh.M.,Butyagin P.I. Diffuzionnaya model obrazovaniya gradiyentnykh oksidnykh pokrytiy v mikroplazmennom rezhime(Diffusion model of formation of gradient oxide coatings in the microplasma mode). Fizika i khimiya obrabotki materialov=Physics and chemistry of materials processing.2002. 3. 18-22. (in. Russ.). http://www.imet.ac.ru/fxom/
Ramazanova Zh.M., Kirgizbayeva K.Zh., Akhmedyanov A.U., Jaxymbetova M.A., Yergaliyev D., Zhakupova A. and Abdirashev O. Influence of the process of microplasma treatment in electrolyte solutions on the oxide coating properties. International Journal of Mechanical Engineering and Technology. 2018. 9, 12, 709-721. (in Eng.). http://www.iaeme.com/Ijmet/index.asp
Nussupov, K.K., Beisenkhanov, N.B., Beisembetov, I.K., Kenzhaliev, B.K., Seitov, B.Z., Dulatuly, E., Bakranova, D.I. The formation of TixNy and TaxNy-based diffusion barriers. Materials Today: Proceedings Volume 4, Issue 3, 2017, Pages 4534-4541. (in Eng.). https://doi.org/10.1016/j.matpr.2017.04.026
Kenzhaliyev B.K., Trebukhov S.A., Volodin V.N., Trebukhov A.A., Tuleutay F.KH. Izvlecheniye selena iz promproduktov metallurgicheskogo proizvodstva // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. 2018. No4. S. 56-64. (in. Russ.). https://doi.org/10.31643/2018/6445.30
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ramazanova, J., & Zamalitdinova, M.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.