Simulation modeling of stressed-deformed mode of band at rolling in a multi-functional longitudinal-wedge mill

Authors

  • S.A. Mashekov Satbayev University
  • L.R. Kiyanbekova Kyrgyz National Technical University named I. Razzakov
  • A.S. Mashekova Nazarbayev University
  • R.E. Urazbayeva Kyrgyz National Technical University named I.Razzakov

DOI:

https://doi.org/10.31643/2018/6445.8

Keywords:

rolling, stress-strain state, numerical modeling, stresses intensity, deformations, plasticity.

Abstract

The paper presents results of investigation of stress-deformed state (SDS) of a metal block at rolling in longitudinal-wedge mill (LWM).The quantitative data obtained by the finite elements method and the MSC Super Forge program, and the main regularities in the distribution of SDS and the temperature at blanks rolling in a longitudinal-wedge mill with various unitary crimps were established. To determine the ultimate plasticity, the samples were tested on an STD 812 plastometer. This plastometer allows testing specimens by torsion, stretching and compression at temperatures up to 1500 ° C. The test is performed with continuous or fractional crimp with a given degree and strain rate at each passing. The plastometer is equipped with a control unit and a computer program that allow automatic output of the resistance curves of deformation of metals and alloys. It is established that the steel 08kp is characterized by a sufficiently high level of ultimate plasticity and has a wide range of satisfactory deformability. It is found an increase of the value of the ultimate plasticity at the examined deformation rates with increasing test temperature, and the rolling of strips of the steel 08kp in the longitudinal-wedge mill is carried out without disrupting the continuity of the billet material. It is shown that rolling in multifunctional LWM leads to the localization of stress intensity and deformation in the initial stage of rolling in the zones of capture of the workpiece by a roller. At subsequent stages, the sections concentrating the intensity of stresses and deformations gradually transferred from the central layers to the surface zones and edges of the workpiece. Gradual transfer of intensity of stresses and deformation from the center to the edges and the surface of the workpiece makes it possible, by selecting rational deformation modes of rolling, to obtain high-quality bands with a fine-grained structure.

Downloads

Download data is not yet available.

Author Biographies

S.A. Mashekov, Satbayev University

Dr.Sci.Tech., Professor, Professor lecturer , Kazakh National Research Technical University named K.I. Satpaev «Machine-tool construction, materials science and technology of machine-building production», Almaty, Kazakhstan.

L.R. Kiyanbekova, Kyrgyz National Technical University named I. Razzakov

Master, Postgraduate, Kyrgyz National Technical University named I. Razzakov, Bishkek, Kyrgyzstan.

A.S. Mashekova, Nazarbayev University

PhD, Lecturer, Nazarbayev University, Astana, Kazakhstan.

R.E. Urazbayeva, Kyrgyz National Technical University named I.Razzakov

Master, Postgraduate, Kyrgyz National Technical University named I. Razzakov, Bishkek, Kyrgyzstan.

References

Mazur V.L., Novogitsyn A.V. Teoriya I tekhnologiya tonkolistovoj prokatki. (The theory and technology of thin sheet rolling). Dneprpetrovsk: Dnipro-VAL. 2010. 50. (in Russ.).

Fedonin O.V., Unru S.Ya., Nemkin M.V, Danilenko D.N., Kandurov E.G. Perspectivy razvitiya proizvodstva kholodnokatanogo prokata na mirovom i rossijskom rynkakh . (Prospects of development of the production of cold-rolled steel in the world and Russian markets). Metallurg = Metallurgist. 2011. 5. 9–17. (in Russ.).

Ivanchenko V.G., Tilik V.T., Shtehno O.N., Golubyh G.N., Koval’ S.N., Panchenko V.S. Sovremennye tendentsii razvitiya tekhnologii proizvodstva goryachekatannykh osobotonkikh polos. (Modern trends development of technology for the production of hot-rolled extremely thin strips). Fundamental’nye i prikladnye problem chernoj metallurgii Sb. nauch. tr. (Fundamental and applied problems of ferrous metallurgy: Collection of sci. works). Dneprpetrovsk: ICHM NAS Ukraine, 2004. 8. 232–238. (in Russ.).

Zinov’ev A.V. Tekhnologiya prokatki i smotki tonkikh polos na litejnoprokatnom aggregate (Technology of rolling and scrubbing thin strips on a casting aggregate). Novosti chernoj metallurgii zarubejom = News of ferrous metallurgy abroad. 2006. 2. 49–52. (in Russ.).

Salganik V.M., Gun I.G., Karandaev A.S., Radionov A.A. Tonkoslyabove litejno-prokatnye agregaty dlya proizvodstva stal’nyh polos (Thin-slab casting and rolling units for the production of steel strips). Moscow: MGTU of Bauman. 2003. 506. (in Russ.).

Rudoj L.S. Dvukhvalkovaya ustanovka nepreryvnoj razlivki stali (Twin roll continuous casting of steel). Metallurgicheskaya i gornorudnaya promyshlennost’ = Metallurgy and mining-ore industry. 2010. 7. 244–246. (in Russ.).

Grydin O., Batyrshina E., BachFr.W. Mathematische Modellierung des Giebens von dunnen Blechennachdem Zwei- Rollen-Verfahren. 27th CADFEM Users’ Meeting: Proceedings of ANSYS Conf., Leipzig, Germany, 2009. 1–9. (in German).

Egorov V.V., Sosenko V.U., Sosenko S.U. Litejno-prokatnyj agregat s dvukhvalkovyj mashinoj dlya proizvodstva stal’nogo goryachekatanogo lista (Casting-rolling machine with a twin roll machine for producing hot-rolled steel sheet). Tyazheloe mashinostroenie = Basic engineering industry. 2006. 5. 8-11. (in Russ.).

Gun I.G., Salganik V.M., Pivovarov F.V. Tonkoslyabovye litejno-prokatnye agregaty: razvitie tekhnologii, komponovki oborudovaniya (Thin-slab casting and rolling units: the development of technology, layouts and equipment). Chernaya metallurgiya = Ferrous metallurgy. Bul. NTiIA, 2000. 3-4. 23-25. (in Russ.).

Efimenko S.P., Tarasevich U.F. Perspektiva proizvodstva osobotonkogo goryachekatannogo lista (Perspective of production of extra-thin hot-rolled sheet). 3-ij kongr. prokatchikov: tr. kongr. (3-th congr. of roller-men: proceedings of congress). Moscow, Russia, 2008. 60-65. (in Russ.).

Antipin V.G. Progress v proizvodstve tonkikh stal’nyh polos (Progress in the production of thin steel strips). Chernaya metallurgiya = Ferrous metallurgy. Bul. 2002. 8. 3-9. (in Russ.).

Bobih P., Borei R., Rotta M. Tendentsii razvitiya tekhnologii i oborudovanya dlya proizvodstva vysokokachestvennoj polosovoj stali (Trends in the development of technology and equipment for the production of high-quality strip steel) 4-yj kongr. prokatchikov: tr. kongr. (4-th congr. of roller-men: proceedings of congress). Magnitigorsk. Russia. 2001. 16–19 October, 54-57. (in Russ.)

Rakhadilov B.K.. Stepanova O.A., Sagdoldina Zh.B., Baiserkenova T.N. Struktura poverkhnosti bystrorezhushchej stali R6M5 posle ehlektronno-luchevoj obrabotki (The R6M5 fast-cutting steel surfaces structure after electron beam treatment). Kompleksnoe ispol’zovanie mineral’nogo syr’ya = Complex use of mineral resources. 2017. 3. 54–58. (in Russ.)

Kulik A.N., Urkov K.U., Fajchak A.A., Shevchenko V.V. Perspektivnye konstruktsii pretsizionnykh stanov (Promising constructions of precision equipment). 2008 URL: http://www.nbuv.gov.ua/portal/natural/Zmmvp/2008_10/3.pdf. (Date of access 13.05. 2009). (in Russ.)

Pat. 20969 KZ. Nepreryvnyj stan dlya prokatki polos iz stalej i splavov (Continuous rolling mill to strips of steels and alloys) / Mashekov S.A., Nugman E.Z.,. Mashekovai A.S. Opubl. 16.03. 2009, 3. (in Russ.).

Pat. 31750 RZ. Mnogofunkcional’nyj prodol’no- klinovyj stan dlya prokatki listov iz stalej I splavov (Multifunctional longitudinal-wedge rolling mill for rolling sheets of steels and alloys) / Mashekov S.A., Mashekova A.S., Nugman E.Z. Opubl. 30.12.2016, 18. (in Russ.).

Mashekov S.A., Nurtazaev A.E., Nugman E.Z., Mashekova A.S., Tusupkalieva A.A. Mnogofunktsional’nyj prodol’no-klinovyj stan dlya prokatki tonkikh polos iz stalej i splavov (Multifunctional longitudinal-wedge rolling mill for rolling sheets of steels and alloys) Almaty: Nur Print, 2018. 307. (in Russ.).

Ivanov K.M., Shevchenko V.S., Urgenson A.E. Metod konechnykh ehlementov v tekhnologicheskikh zadachakh OMD. Uchebnoe posobie. (Method of finite elements in technological problems of OMD. Tutorial). Sankt-Peterburg: Institut Mashinostroeniya, 2000. 217. (in Russ.).

Soldatkin A., Golenrov U. Programma MSC. Super Forge kak odin iz ehlementov sistemy virtual’nogo proizvodstva i upravleniya kachestvom izdelij (MSC. User Forge as one of the elements of the virtual production and product quality management system). SAPR i grafika = SAPR and graphics. 2000. 7. 11–13. (in Russ.).

Bogatov A.A., Mijirickij O.I., Smirnov S.V. Resurs Plastichnosti metallov pri obrabotke davleniem (Resource of plasticity of metals in pressure treatment). Moscow: Metallurgiya, 1984. 144. (in Russ.).

Grosman F., Hadasik E. Technologiczna plastyczność metali. Badania plastometryczne. Gliwice: Wydawnictwo Politechniki Śląskiej. 2005. 11–12. (in Polish.) https://doi.org/10.17073/0368-0797-2016-9-610-614

Mashekova A.S., Smailova N.T., Mashekov S.A. Problemy kovki titanovykh splavov i ikh resheniya. Monografiya. (Problems of forging titanium alloys and their solutions. Monograph). Saarbrucken: LAP Lambert Academic Publishing. 2013. 1, 230, 2. 251. (in Russ.).

Downloads

Published

2018-05-23

How to Cite

Mashekov, S., Kiyanbekova, L., Mashekova, A., & Urazbayeva, R. (2018). Simulation modeling of stressed-deformed mode of band at rolling in a multi-functional longitudinal-wedge mill. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 305(2), 66–76. https://doi.org/10.31643/2018/6445.8