Influence of circulating waters’ parameters, chemical composition and structural heterogeneity of AISI304 steel on its pitting resistance

Authors

  • О.E. Narivs’kyi Zaporozhye National Technical University
  • S.A. Subbotin Zaporizhzhia National Technical University
  • S.B. Belikov Zaporizhzhia National Technical University
  • G.Sh. Yar-Mukhamedova al-Farabi Kazakh National University
  • A.E. Kemelzhanova Al-Farabi Kazakh National University

DOI:

https://doi.org/10.31643/2019/6445.13

Keywords:

corrosion, pitting resistance, chloride-containing solution, steel, heat exchangers.

Abstract

The goal of the work was to study the affect of the parameters of steel and circulating waters on the pitting resistance of AISI304 steel to develop practical recommendations for its use when manufacturing and operating heat exchangers. Based on the analyzed results of the study of how the AISI304 steel and circulating waters’ parameters affect its pitting resistance, there were plotted regression models: a first-order linear model, a second-order model, a second-order model with first order quotients, and a linear model with a reduced number of indications. The analysis of these models has shown that the pitting resistance of the steel in model circulating waters is most affected by its chloride content and the average distance between oxides in the steel. The indications x3 (average diameter of austenite grains) and x10 (Cr content) have a slightly lesser effect the steel’s pitting resistance criterion.

Downloads

Download data is not yet available.

Author Biographies

О.E. Narivs’kyi, Zaporozhye National Technical University

Dr. Sc., Professor, Technical Director, “Ukrspetsmash” LLC, Berdyansk, Ukraine.

S.A. Subbotin, Zaporizhzhia National Technical University

Dr. Sc., Professor, Head of the Department of Software Tools, Zaporizhzhia National Technical University, Zaporizhzhia, Ukraine.

S.B. Belikov, Zaporizhzhia National Technical University

Dr. Sc., Professor, Rector, Zaporizhzhia National Technical University, Zaporizhzhia, Ukraine.

G.Sh. Yar-Mukhamedova, al-Farabi Kazakh National University

al-Farabi Kazakh National University, Institute of Experimental and Theoretical physics, Dr. Sc., Professor.

A.E. Kemelzhanova, Al-Farabi Kazakh National University

al-Farabi Kazakh National University, Solid State and Nonlinear Physics, Ph.D.

References

NarivskyiО.Е. Koroziyno-elektrokhimichna povedinka konstruktsiynykh materialiv dlya plastynchastykh teploobminnykiv u modelʹnykh oborotnykh vodakh: dys. ... kand. tekhn. nauk:05.17.14(Corrosion-electrochemical behavior of structural materials for plate heat exchangers in modeling reversible waters: diss. ... Candidate tech Sciences: 05.17.14)Narovsky Oleksiy Eduardovich. Lviv, 2009.209.(in Russ).

Narivs'kyi O.E. Micromechanism of corrosion fracture of the plates of heat exchangers.Materials Science. 2007. 43, 1.124-132. (in Eng). https://doi.org/10.1007/s11003-007-0014-3

Narivs'kyi O.E. Corrosion fracture of platelike heat exchangers.Materials Science. 2005. 41, 1. 122-128. (in Eng). https://doi.org/10.1007/s11003-005-0140-8

Narivsky O.E.Zakonomirnosti i mekhanizmy lokalʹnoyi koroziyi koroziynotryvkykh staley i splavu austenitnoho klasu dlya yemnisnoyi ta teploobminnoyi aparatury(Laws and mechanisms of local corrosion of corrosion-resistant steels and an alloy of the austenitic class for capacitive and heat-exchange equipment)NAS of Ukraine, Phys. -Mech. in-t them GV Karpenko.Lviv, 2015. 42.(in Ukr).

Pistorius P.C., Burstein G.T. Growth of corrosion pits on stainlesssteel in chloride solution containing dilute sulphate.Corrosion Science. 1992.33, 12.1885-1897. (in Eng). https://doi.org/10.1016/00938X(92)90191-5

Pistorius P. C. Burstein G.T. Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel.Corrosion Science. 1992.36, 3.525-538. (in Eng). https://doi.org/10.1016/0010-938X(94)90041-8

Moretti G. Quartarone.G.A., Tassan, Zingales A. Pitting corrosion behaviour of superferritic stainless steel in waters containing chloride.Materials and Corrosion. 1993. 44, 1. 24-30. (in Eng). https://doi.org/10.1002/maco.19930440107

Dutta R.S., De P.K., Gadiyar H.S The sensitization and stress corrosion cracking of nitrogen-containing stainless steels.Corrosion Science. 1993. 34, 1.51-60. (in Eng). https://doi.org/10.1016/0010-938X(93)90258-I

Osozawa K. Okato N.Passivity and its Breakdown on Iron and Iron Based Alloys.U.S.A.Japan Seminar, Honolulu. –Houston: NACE, 1976.135. (in Eng). https://doi.org/10.1023/A:1004597518809

Jargelius-Pettersson R.F.A Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels.Corrosion Science. 1999.41, 8.1639-1664. (in Eng). https://doi.org/10.5006/1.3293567

Schmuki P. Hildebrand H., Friendrich A., Virtanen S.The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion.Corrosion Science.2005. 47.1239-1250. (in Eng). http://dx.doi.org/10.1016%2Fj.corsci.2004.05.023

Web E.G. Alkire R.C. Pit initiation at single sulfide inclusions in stainless steel. II. Detection of local pH, sulfide and thiosulfide.Journal of Electrochemical Society. 2002.149.280-285. (in Eng). http://doi=10.1.1.845.4923&rep=rep1&type=pdf

Williams D.E, Zhu Y.Y. Explanation for initiation of pitting corrosion of stainless steel at sulfide inclusions.Journal of Electrochemical Society. 2000.147.1763-1766. (in Eng). https://dx.doi.org/10.3390%2Fma10091076

Pardo A. Merino M. C., Coy A.E., Viejo F., Arrabal R., Matydinal E.Pitting corrosion behaviour of austenitic stainless steel-combining effects of Mn and Mo additions.Corrosion Science. 2008.50.1796-1806. (in Eng). http://dx.doi.org/10.1590/S037044672013000200006

Narivskyi A.E. Determination of pitting resistance steel AISI304 became in chloride-containing environment which are in work of type heat excahngers.Physicochemical mechanics of materials. Special issue. 2006. 136-140. (in Eng). https://doi:10,3390/ma10091076

Narivs'kyi O.E. Influence of the heterogeneity AISI321 on its pitting in chloride-containing media.Materials Science. 2007. 43, 2.256-264. (in Eng). https://doi.org/10.1179/1743278214Y.0000000221

Narivsky O.E., Belikov S.B.Otsinka stiykosti splavu 06KHN28MDT dopitynhovoyi ta shchilynnoyi koroziyi v khlorydovmisnykh seredovyshchakh (Assessment of the stability of the alloy 06ХН28МДТ to pitting and slit corrosion in chloride-containing environments). Novi materialy i tekhnolohiyi v metalurhiyi ta mashynobuduvanni=New materials and technologies in metallurgy and machine-building. 2007. 2.45-53. (in Ukr). http://rmebrk.kz/journals/5131/11158.pdf

Narivskyi O.E. Criterions of estimation of pitting resistanceof non-rusting steels AISI304, 08X18H10 which use for the production of type heat echangers.Physical and chemical mechanics of materials. Specialissue. 2007. 6. 172-177. (in Eng).

Narivskyi O.E. Pitting resistance of 06KHN28MDT allog in chloridecontaining media. Materials Science. 2008. 44, 4. 573–580.(in Eng).

Byelikov S.B., Narivsʹkyy O.E. Kinetyka koroziynykh protsesiv staley AISI 321 ta 12KH18N10T u neytralʹnykh khlorydovmisnykh rozchynakh ta shvydkistʹ yikh koroziyi(Kinetics of corrosion processes of steels AISI 321 and 12Х18Н10Т in neutral chloride-containing solutions and their corrosion rate)New materials and technologies in metallurgy and machine-building. 2011. 1. 36-44. (in Russ).

Narivsʹkyy O.E. Vplyv khimichnykh elementiv i strukturnoyi heterohennosti stali AISI 321 na koroziyne rozchynennya Cr, Ni ta Fe u khlorydovmisnykh rozchynakh(Influence of chemical elements and structural heterogeneity of steel AISI 321 on corrosion dissolution of Cr, Ni and Fe in chloride-containing solutions)Scientific herald of NLTU of Ukraine. 2014.24.2.164-172.(in Ukr).

Narivsʹkyy O.E. Kinetyka koroziynykh protsesiv ta shvydkistʹ pitinhuvannya splavu 06KHN28MDT u slabokyslykh khlorydovmisnykh seredovyshchakh(Kinetics of corrosion processes and the rate of pitting of an alloy 06ХН28МДТ in weakly acid chloride-containing environments). Scientific notes. 2011.31. 214-220 . (in Ukr). http://www.ipm.lviv.ua/aref_Narivskiy.pdf

Narivsʹkyy O.E. Zakonomirnosti koroziynoho rozchynennya ta shvydkistʹ pitinhuvannya splavu 06KHN28MDT u neytralʹnykh khlorydovmisnykh rozchynakh (Patterns of corrosion dissolution and speed of pitting of an alloy 06ХН28МДТ in neutralchloride-containing solutions).Scientific notes. 2011. 32.255-261.(in Ukr). http://nbuv.gov.ua/UJRN/Nn_2011_32_46

Naryvskyy A.É., Solydor N.A. Korrozyonnye protsessy y skorostʹ rosta pyttynhov staley AISI 304 y 08KH18N10T v modelʹnykh oborotnykh vodakh(Corrosion processes and the rate of growth of pitting in AISI 304 and 08X18N10T steels in model recycled waters). Bulletin of the Priazovsky State Technical University. Series: Technical Sciences.2011. 2. 87-97.. (in Russ). http://eir.pstu.edu/handle/123456789/1

Naryvskyy A.É., Belykov S.B. Kharakternye osobennosty selektyvnoho rastvorenyya pyttynhov na poverkhnosty staly AISI 321 v modelʹnykh oborotnykh vodakh(Characteristic features of selective dissolution of pitting on the surface of steel AISI 321 in model recycled waters).New materials and technologies in metallurgy and machine building.2015.1. 24-31.(in Russ).

Freyman L.I., Bayeman A.R., Pikus. Ye.A, Gudzhabidze L.Ye. Opredeleniye kriticheskogo razmera pittinga na nerzhaveyushchey stali(Determination of the critical size of pitting on stainless steel) Protection of metals. 1988. 24, 4. 614–617. http://rmebrk.kz/journals/5131/11158.pdf(in Russ).

Freedman D. A. Statistical Models: Theory and Practice.Cambridge University Press, 2005. 458.(in Eng).

Haykin S.O. Neural Networks and Learning Machines.London: Pearson, 2008. 936.(in Eng).

Nocedal J. Numerical Optimization / J.Nocedal, Wright S. –New York: Springer-Verlag, 2006.664.(in Eng).

NarivskiyA.E. Vliyaniyestrukturysplava06KHN28MDTnayegokorrozionnoyepovedeniyevokislitel'nykhsredakh. (The influence of the structure of the alloy 06HN28MDT on its corrosion behavior in oxidizing media) Corrosion: materials, protection. 2011.2. 33–40. (inRuss).

Narivskiy A.E. Stoykost' splava 06KHN28MDT k mezhkristallitnoy korrozii v zavisimosti ot yego khimicheskogo sostava(Resistance alloy 06HN28MDT to intergranular corrosion, depending on its chemical composition)Corrosion: materials, protection. 2010. 11. 15–20.(in Russ).

Narivsʹkyy O.E. Osoblyvosti selektyvnoho rozchynennya metaliv u pitynhakh na poverkhni stali AISI304(Features of selective dissolution of metals in piping on the surface of steel AISI304) Physical-chemical mechanics of materials. 2016. 11Special issue "Problems of corrosion and corrosion protection of structural materials". 50-55.(in Ukr).

utierrrez de Sainz-Solabarria S. San Juan Nutez J.M. Estudio de la susceptibilidad de unacero inoxidable austenitico estabilizado con niobio al danado por tensocorrosion en midioH2S (SSC) y corrosion intergranular (IGG) en otros medios agresivos.Deformación metálica. 1996. 226. 77–83. (in Eng).

Olefjord I. Wegrelius L.The influence of nitrogen on the passivation of stainless steels.Corrosion Science. 1996. 38, 7.1203-1220.(in Eng).

Kenzhaliyev, B.K., Gladyshev, S.V., Abdulvaliyev, R.A., Omarova, S.A., Beisembekova, K.O., Manapova, A.I., Imangalieva, L.M. Activation of ash slagwaste before chemical enrichment. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2017. 2(422), с. 143-148(in Eng.).

Downloads

Published

2019-05-02

How to Cite

Narivs’kyi О., Subbotin, S., Belikov, S., Yar-Mukhamedova, G., & Kemelzhanova А. (2019). Influence of circulating waters’ parameters, chemical composition and structural heterogeneity of AISI304 steel on its pitting resistance. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 309(2), 24–33. https://doi.org/10.31643/2019/6445.13