Assessment of the influence of the structural characteristics of granular systems of microsilicon on the properties of thermal insulation materials

Authors

  • I. Sangulova Limited Liability Partnership "International Educational Corporation"
  • V. Selyaev N.P. Ogarev Mordovian State University
  • E. Kuldeev Satbayev University, Institute of Metallurgy and Ore Beneficiation
  • R. Nurlybaev Director of Limited Liability Partnership "SAVENERGY"
  • Y. Orynbekov Limited Liability Partnership "SAVENERG

DOI:

https://doi.org/10.31643/2022/6445.01

Keywords:

x-ray diffractometer, microsilicon, thermal conductivity, diatomite, structure, filler.

Abstract

The article discusses experimental studies of the size and shape of structured particles of microsilica small angle x-ray scattering method and a photophonon theoretical description of the heat transfer process in complex heterogeneous structures to assessment of the structural characteristics of granular systems for the properties of thermal insulating materials. The mechanism of heat transfer in granular, porous systems is quite complex, since heat exchange occurs in a material consisting of two phases (solid and gas) and at the phase boundary. Heat transfer in liquid thermal insulation coatings can be carried out from one solid particle to another. In this case, the thermal conductivity will depend on: the chemical and elemental composition of the material; particle granulometry; surface topology - the presence of inhomogeneities, defects on the surface; the number of touches and the contact area between the particles. The heat transfer of gas in the pores is carried out when gas molecules collide. Thermal conductivity will be determined by the ratio of the free path of molecules and linear pore sizes, temperature and dynamic viscosity of the gas phase, the nature of the interaction of gas molecules with the solid phase. Heat transfer by radiation depends on the nature of the particles, the dielectric, magnetic permeability and the degree of blackness of the particle surface. Based on the analysis of possible mechanisms of heat transfer in granular systems, it can be argued that the effective thermal conductivity of the system depends, all other things being equal, on the structure of the pore space of granular materials, topology and the number of particle touches. Considering idealized models of the structure of granular materials in the form of ordered folds of perfectly smooth balls, we can obtain several variants of structures: with tetrahedral; hexagonal; cubic packing of balls.

Downloads

Download data is not yet available.

Author Biographies

I. Sangulova, Limited Liability Partnership "International Educational Corporation"

Head of the Laboratory, Faculty of Construction Technologies, Infrastructure and Management,

V. Selyaev , N.P. Ogarev Mordovian State University

Doctor of Technical Sciences, Professor, Head of the Department of Building Structures of the Mordovian State University,

E. Kuldeev, Satbayev University, Institute of Metallurgy and Ore Beneficiation

Candidate of Geological and Mineralogical Sciences, Vice-Rector for Corporate Development and Strategic Planning

R. Nurlybaev, Director of Limited Liability Partnership "SAVENERGY"

Doctor of PhD

Y. Orynbekov , Limited Liability Partnership "SAVENERG

Candidate of Technical Sciences

References

Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HTD, Konarev PV, Svergun DI.New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Cryst., 2012, 45, 342-350.

SavelyevaIYu. Matematicheskoye modelirovaniye protsessov teploprovodnosti metodom konechnykh elementov[Mathematical modeling of thermal conductivity processes by the finite element method]: textbook.IYuSavelyeva, IV Stankevich. Moscow: Bauman Moscow State Technical University, 2018. p. 178.(in Russ.)

Selivanova ZM.Teoreticheskiye osnovy postroyeniya intellektual'nykh informatsionno-izmeritel'nykh sistem dopuskovogo kontrolya teploprovodnosti teploizolyatsionnykh materialov[Theoretical foundations of the construction of intelligent information and measurement systems for the tolerance control of thermal conductivity of thermal insulation materials]: monograph.ZM Selivanova, KS Stasenko. -Tambov: Tambov State Technical University, EBS DIA, 2015. p. 200.(in Russ.)

Patent of the Russian Federation 2144595. Kokoev M.N., Fedorov V.T. Vakuumnoye teploizolyatsionnoye izdeliye[Vacuum thermal insulation product]. Byul. N 220.01.2000.(in Russ.)

Kudinov IV. Teoreticheskiye osnovy teplotekhniki. Chast' II. Matematicheskoye modelirovaniye protsessov teploprovodnosti v mnogosloynykh ograzhdayushchikh konstruktsiyakh [Theoretical foundations of heat engineering. Part II. Mathematical modeling of thermal conductivity processes in multilayer enclosing structures]: textbookIV Kudinov, EV Stefanyuk. -Samara: Samara State University of Architecture and Civil Engineering, EBS DIA, 2013. p. 422.(in Russ.)

Sevostyanov AV. Eksperimental'noye opredeleniye koeffitsiyenta teploprovodnosti tverdogo tela: metodicheskiye ukazaniya k laboratornoy rabote po distsipline “Teplomassoobmen”[Experimental determination of the coefficient of thermal conductivity of a solid: guidelines for laboratory work on the discipline "Heat and mass transfer"]AVSevostyanov, TGManukovskaya. Lipetsk: Lipetsk State Technical University, EBS DIA, 2017.16 p.(in Russ.)

Andreev LA. Fizikokhimiya poverkhnostnykh yavleniy: propitka poristykh materialov[Physical chemistry of surface phenomena: impregnation of porous materials].Textbook.LAAndreev. -Moscow: MISIS Publishing House, 2011. 118 p.(in Russ.)

Krainov AYu. Osnovy teploperedachi. Teploperedacha cherez sloy veshchestva[Fundamentals of heat transfer. Heat transfer through a layer of matter]: textbook.Tomsk: STT,2016.48 p.(in Russ.)

Maxim VA, Vitaly SR. Eksperimental'noye opredeleniye koeffitsiyenta teploprovodnosti sverkhtonkikh zhidkikh kompozitsionnykh teploizoliruyushchikh pokrytiy. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [Experimental determination of the thermal conductivity coefficient of ultrathin liquid composite thermal insulation coatings. Proceedings of Tomsk Polytechnic University. Georesource engineering].2015;326(9):15-22. (in Russ.)

KolmychkovVV, Mazhorova OS.Issledovaniye ustoychivosti kvadratnykh yacheyek v zhidkosti c koeffitsiyentom teploprovodnosti, zavisyashchim ot vertikal'noy koordinaty, Preprinty IPM im. MVKeldysha [Study of the stability of square cells in a liquid with a thermal conductivity coefficient depending on the vertical coordinate,Preprints of M.V. Keldysh IPM].2020. 112. https://doi.org/10.20948/prepr-2020-112 (in Russ.)

Gladkov SO.Gazokineticheskaya model' teploprovodnosti geterogennykh veshchestv[Gas-kinetic model of thermal conductivity of heterogeneous substances].Zhurnal tekhnicheskoy fiziki =Journal of Technical Physics. 2008; 7:12-15.(in Russ.)

Kudinov IV, Stefanyuk EV, Eremin AV, Kotova EV.Analiticheskiye resheniya zadach teploprovodnosti i termouprugosti s peremennymi fizicheskimi svoystvami sredy[Analytical solutions to problems of thermal conductivity and thermoelasticity with variable physical properties of the medium]: textbook.IVKudinov et al.Samara: Samara State Technical University, EBS DIA, 2016.(in Russ.)

Glazkov VN. Metody izucheniya struktury ikolebaniy kristallov[Methods of studying the structure and vibrations of crystals]. M.: MIPT, 2015. 42 p. (in Russ.)

Anisimov MV, Rekunov VS. Eksperimental'noye opredeleniye koeffitsiyenta teploprovodnosti sverkhtonkikh zhidkikh kompozitsionnykh teploizoliruyushchikh pokrytiy. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [Experimental determination of the thermal conductivity coefficient of ultrathin liquid composite thermal insulation coatings.Proceedings of Tomsk Polytechnic University. Georesource engineering]. 2015; 9:15-22.(in Russ.)

Maneshev IO, Pravnik YuI, Sadykov RA, Safin IA. Eksperimental'noye opredeleniye koeffitsiyenta teploprovodnosti i effektivnosti sverkhtonkikh teploizolyatsionnykh pokrytiy[Experimental determination of thermal conductivity coefficient and efficiency of ultrathin thermal insulation coatings]. Izvestiya KGASU = News of KGASU. 2013; 1:135-142.(in Russ.)

Khabibullin YuKh, Barysheva OB.Razrabotka teploizoliruyushchikh pokrytiy i metodiki opredeleniya ikh teplofizicheskikh svoystv[Development of heat-insulating coatings and methods for determining their thermophysical properties]. Izvestiya KGASU = News of KGASU. 2015; 3:245-249.(in Russ.)

Pavlov MV, Karpov DF, Sinitsyn AA, Mnushkin NV. Opredeleniye koeffitsiyenta teploprovodnosti zhidkoy teplovoy izolyatsii v laboratornykh usloviyakh [Determination of the thermal conductivity coefficient of liquid thermal insulation in laboratory conditions].Vestnik Volgogradskogo gosudarstvennogo arkhitekturnostroitel'nogo universiteta =Bulletin of the Volgograd State University of Architecture. 2014; 37:79-86.(in Russ.)

Selyaev VP, Osipov AK, Kupriyashkina LI, Sedova AA, Kichutkina EL, Suponina LA. Vozmozhnost' sozdaniya teploizolyatsionnykh materialov na osnove nanostrukturirovannogomikrokremnezema iz diatomite[The possibility of creating thermal insulation materials based on nanostructured silica from diatomite].Nauka: 21 vek =Nauka: 21st century. 2011;15(3):76-86.(in Russ.)

Selyaev VP, Osipov AK, Neverov VA, Neverov VA, Mashtaev OG, Sidorov VV. Polistrukturnaya model' teploizolyatsionnogo materiala na osnove dispersnogo mikrokremnezema[Polystructural model of thermal insulation material based on dispersed silica]. Regional'naya arkhitektura i stroitel'stvo=Regional architecture and construction. 2012;13(2):5-11.(in Russ.)

Downloads

Published

2021-11-10

How to Cite

Sangulova, I., Selyaev , V., Kuldeev, E., Nurlybaev, R., & Orynbekov , Y. (2021). Assessment of the influence of the structural characteristics of granular systems of microsilicon on the properties of thermal insulation materials . Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 320(1), 5–14. https://doi.org/10.31643/2022/6445.01