Cluster-associated viscosity model and methods for determining its parameters
DOI:
https://doi.org/10.31643/2020/6445.14Keywords:
Boltzmann's distribution, viscosity, associate, cluster, temperature.Abstract
A detailed development of a hierarchical cluster-associate mathematical viscosity model is shown. The model is based on the equilibrium Boltzmann’s distribution and, therefore, is regarded as a chaosensitive property of a fluid inherent in it not only in motion but also at rest. In this model, the key characteristics are chaotic thermal barriers at the melting and boiling points, in connection with which the behavior of a liquid is determined by the action of three energy classes of particles – crystal-mobile, liquid-mobile, and vapor-mobile. An important single indicator in the new model depends on temperature and makes sense of the degree of association of clusters of crystal-mobile particles. The assignment of the activation energy of the viscous flow of melts determined by the Frenkel’s equation to the degree of cluster association gives a constant value commensurate with the binding energy of the van der Waals particle attractive forces. On this basis, the authors hypothesized that a viscous flow occurs due to the destruction of cluster associates while preserving the clusters themselves. To adapt the cluster-associate model to experimental data, certain data processing techniques have been developed to identify unknown model parameters. All calculations are illustrated on liquid lithium and have shown their high adequacy. Also added is a method for processing viscosity data using the entire set of viscosity data while maintaining two reference points and processing the rest to determine the degree of aggregation of associates.
Downloads
References
Melikhov I.V. Fiziko-khimicheskaya evolyutsiya tverdogo veshchestva (Physicochemical Evolution of Solids). Moscow: BINOM. Laboratoriya znaniy, 2006,309. (In Rus.)
Elanskiy G.N.. Elanskiy D.G. Stroyeniye i svoystva metallicheskikh rasplavov(The structure and properties of metal melts). Moscow: MGVMI, 2006,228. (In Rus.)
Baum B.A., Tyagunov G.V., Baryshev E.E.,Tsepelev E.S. Fundamentalnyye issledovaniya fiziko-khimii metallicheskikh rasplavov(Basic research of the physical chemistry of metal melts). Moscow: Akademkniga, 2002, 469. (In Rus.)
Miracle D.B., Senkov O.N. A critical review of high entropy alloys andrelated concepts. Acta Mater. 2017, 122, 448-511. (In Eng.) https://doi.org/10.1038/s41467-019-09700-1
Fundamentalnyye issledovaniya fizikokhimii metallicheskikh rasplavov(Fundamental studies of the physical chemistry of metal melts). Ed. N.P. Lyakishev. Moscow: Akademkniga, 2002, 467. (In Rus.)
Velisa V., Martin Trusler J.P., Assael M.J., Riesco N., Quiñones-Cisneros S.E. Dense fluids: viscosity. In book: Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids. Chapter 8. Publisher:Royal Society of Chemistry.(In Eng.) https://doi.org/10.1039/9781782625254-00253
Abdulkareem A., Erturun U., Mossi K. Non-Destructive Evaluation Device for Monitoring Fluid Viscosity. Sensors, 2020, 20(6), 1657-1771.(In Eng.) https://doi.org/10.3390/s20061657
JogenderS., AnilKumar C.V.Dynamic sofaperiodicallyforcedspheroidinaquiescentfluidinthelimitoflow Reynolds numbers. Rheologica Acta, 2019,58(11-12),709-718.(InEng.). https://doi.org/10.1007/s00397-019-01169-5
NorouziM., JafariA., MahmoudiM.Anumericalstudyonnonlineardynamicsofthree-dimensionaltime-dependedviscoelasticTaylor-Couetteflow.RheologicaActa,2018,57(2),127-140.(InEng.). https://doi.org/10.1007/s00397-017-1059-3
Coussot P. Slow flows of yield stress fluids: yielding liquids or flowing solids?RheologicaActa,2018,57(1),10-14.(In Eng.). https://doi.org/10.1007/s00397-017-1055-7
Saramito P. A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model.J. Non-Newton. Fluid Mech.,2009,158, 154-161.(In Eng.)
Balmforth N.J., Frigaard I.A., Ovarlez G. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics. Annual Review of Fluid Mechanics, 2014, 46, 121-146. (In Eng.). https://doi.org/10.1146/annurev-fluid-010313-141424
Leontovich M.A. Vvedeniye v termodinamiku. Statisticheskaya fizika(Introduction to thermodynamics. Statistical Physics.). Moscow: Vyssh. Shkola, 1983, 416. (In Rus.)
Malyshev V.P.Nurmagambetova (Makasheva) A.M. Kontseptsiya khaotizirovannykh chastits kak osnova edinogo otobrazheniya tverdogo. zhidkogo i gazoobraznogo sostoyaniy veshchestva(The concept of randomized particles as the basis for a single display of solid, liquid and gaseous states of matter). Bulletin ofKazNU. Chem. ser. 2004, 3(35), 53-67.(In Rus.)
Karapetiants M.Kh., Drakin S.I. Stroyeniye veshchestva(Substance structure). Moscow: Vyssh. Shkola, 1970, 310. (In Rus.)
Fedorovich Ya.A.. Malyshev V.P. Makasheva A.M.Kazhikenova A.Sh. Metod polnoy approksimatsii eksperimentalnykh dannykh k klasterno-assotsiatnoy modeli dinamicheskoy vyazkosti (The method of full approximation of experimental data to the cluster-associate dynamic viscosity model). Complex Use of Mineral Resources. 2014, 4, 61-66. (InRus.)
Volkov A.I.,Zharskiy I.M. Bolshoy khimicheskiy spravochnik(Great chemical reference). Minsk: Sovremennaya shkola, 2005, 608. (In Rus.)
Malyshev V.P., Makasheva A.M., Bekturganov N.S. Viscosity, fluidity and density of substances. Aspect of Chaotization. Lambert: Academic Publishing (Germany), 2013,340.(In Eng.)
Shpilrayn E.E., Fomin V.A., Skovorodko S.N., Sokol G.F.Issledovaniye vyazkosti zhidkikh metallov (Study of the viscosity of liquid metals). Moscow: Nauka, 1983, 243. (In Rus.)
Gaydyshev I. Analiz i obrabotka dannykh. Spetsial'nyy spravochnik (Analysis and data processing.Special reference). St. Petersburg: Piter, 2001, 750.(In Rus.)
Kobzar' A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov(Applied Mathematical Statistics.For engineers and scientists). Moscow: Fizmatlit, 2006, 816.(In Rus.)
Shennon R. Imitatsionnoye modelirovaniye sistem –iskusstvo i nauka(System Simulation –Art and Science). Moscow: Mir, 1978, 418.(In Rus.)
Ruzinov L.P. Statisticheskiye metody optimizatsii khimicheskikh protsessov(Statistical methods for the optimization of chemical processes). Moscow: Khimiya, 1972, 486.(In Rus.)
Malyshev V.P. K opredeleniyu oshibki eksperimenta, adekvatnosti i doveritel'nogo intervala approksimiruyushchikh funktsiy(To the determination of experimental error, adequacy, and confidence interval of approximating functions). Bulletin of NAS RK. 2000, 4, 22-30.(In Rus.)
Volodin V. N., Tuleushev Y. Zh., Kenzhaliyev B. K., TrebukhovS. A. (2020). Thermal degradation of hard alloys of the niobiumcadmium system at low pressure. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu,1(312), 41–47. (In Eng.). https://doi.org/10.31643/2020/6445.05
Kenzhaliyev, B. K., Surkova, T. Y., & Yessimova, D. M. (2019). Concentration of rare-earth elements by sorption from sulphate solutions. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 3(310), 5–9.(InEng.). https://doi.org/10.31643/2019/6445.22
Kenzhaliev, B. K., Kul’deev, E. I., Luganov, V. A., Bondarenko, I. V., Motovilov, I. Y., & Temirova, S. S. (2019). Production of Very Fine, Spherical, Particles of Ferriferous Pigments from the Diatomaceous Raw Material of Kazakhstan. Glass and Ceramics, 76(5-6), 194–198.(In Eng.).https://doi.org/10.1007/s10717-019-00163-w
Malyshev V.P., Teleshev K.D., Nurmagambetova A.M. Razrushayemost' i sokhrannost' konglomeratov(Destructibility and safety of conglomerates). Almaty: Gylym, 2003, 336.(In Rus.)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Makasheva, А.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.