Plasma electrolytic oxidation technology for producing protective coatings of aluminum alloys

Authors

  • G. Yeshmanova Satbayev University
  • D. Smagulov Satbayev University
  • B. Carsten Institute of Surface Science

DOI:

https://doi.org/10.31643/2021/6445.21

Keywords:

plasma electrolytic oxidation, aluminum alloy, ceramic coatings, corrosion, structure, properties.

Abstract

Today, the technology of hardening the surface layers of parts and the creation of protective coatings on the surface with high physical, mechanical and chemical properties is particularly effective. The article reviews the most promising innovative technologies for surface hardening of aluminum alloys – plasma electrolytic oxidation (PEO). Possible conditions and mechanisms for the formation of protective coatings on the surface of aluminum alloys are considered. The influence of the main parameters of PEO processing (electrical parameters, composition and concentration of electrolyte, the influence of alloying elements) on the structure and properties of oxide-ceramic coatings has been studied. The qualitative characteristics of the surface layer of samples and finished products made of aluminum alloys have shown the effectiveness of the PEO technology, which makes it possible to obtain ceramic coatings with high hardness, strength, increased wear and corrosion resistance. Possible areas of application of high-performance technologies for the deposition of protective PEO coatings on the surface of products made of aluminum alloys are proposed.

Downloads

Download data is not yet available.

Author Biographies

G. Yeshmanova, Satbayev University

Еngeneer.

D. Smagulov, Satbayev University

Doctor of Technical Sciences, professor.

B. Carsten, Institute of Surface Science

pHD, Head of department of Functional Surface.

References

Ramazanova J. M., Zamalitdinova M. G.Physical and mechanical properties investigation of oxide coatings on titanium. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu.2019. 2. 34-41. https://doi.org/10.31643/2019/6445.14 (In Eng.).

Kellogg H.H. Anode Effect in Aqueous Electrolysis.Journal of The Electrochemical Society.1950.97.4.133-142. https://doi.org/10.1149/1.2777980 (In Eng.).

Yerokhin A.L., Lyubimov V.V., Ashitkov R.V. Phase formation in Ceramic Coatings during plasma electrolytic oxidation of aluminium alloys.Ceramics International.1998. 24. 1-6 (In Eng.).

Yerokhin A.L., Snizhko L.O., Gurevina N.L., Leyland A., Pilkington A., Matthews A. Discharge characterization in plasma electrolytic oxidation of aluminium. Applied Physics. 2003. 36. 2110-2120. http://iopscience.iop.org/0022-3727/36/17/314 (In Eng.).

Dunleavy C.S., Curran J.A., Clyne T.W. Self-similar scaling of discharge events through PEO coatings on aluminium. Surface and Coating Technology. 2011. 206. 1051–1061 (In Eng.).

Dunleavy C.S., Curran J.A., Clyne T.W. Time dependent statistics of plasma discharge parameters during bulk AC plasma electrolytic oxidation of aluminium. Appl. Surf. Sci. 2013. 268. 397–409 (In Eng.).

Gupta P., Tenhundfeld G., Daigle E.O., Ryabkov D. Electrolytic plasma technology: Science and engineering —An overview.Surface and Coatings Technology. 2007. 201. 8746–8760. https://doi.org/10.1016/j.surfcoat.2006.11.023 (In Eng.).

Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering.Surface and Coatings Technology. 1999. 122. 73–93. https://doi.org/10.1016/S0257-8972(99)00441-7 (In Eng.).

Evraziyskiy patent 012825 Sposob formirovaniya na poverkhnosti metallicheskikh izdeliy zashchitnogo keramicheskogo pokrytiya(A method of forming a protective ceramic coating on the surface of metal products) /Kokarev V.N. Opubl. 03.12.09. 200901050(44). (in Russ).

Suminov I.V.,Epelfeld A.V.,Lyudin V.B. i dr. Mikrodugovoye oksidirovaniye (teoriya. tekhnologiya. oborudovaniye)(Microarcoxidation (theory, technology, equipment)).M.: Ekomet,2005,368. (in Russ).

PogrebnyakA.D.,KaverinaA.Sh.,Kylyshkanov M.K., Elektrolitno-plazmennaya tekhnologiya dlya naneseniya pokrytiy i obrabotki metallov i splavov(Electrolytic-plasma technology for coating and processing of metals and alloys).Fizikokhimiya poverkhnosti i zashchita materialov= Physicochemistry of surfaces and protection of materials.2014.50. 1.72–88. (in Russ).

Mamaeva А. А., Kenzhegulov А. K., Panichkin А. V., Shah A.Obtaining hydroxyapatite coatings by mechanochemical interaction. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu. 2020. 3. 314. 76-83. https://doi.org/10.31643/2020/6445.29 (In Eng.).

Advanced Surface Treatments for Light Alloys, http//www.keronite.com 22.04.2021

Firkova A.S. i dr. Struktura i svoystva splava AK4–1 T 1. podvergnutogo plazmennoy elektrolitnoy obrabotke novogo pokoleniya(Structure and properties of the AK4-1 T 1 alloy subjected to plasma electrolytic treatment of a new generation).Deformatsiya i razrusheniye materialov i nanomaterialov: Sb. mater. VII mezhdunar. konf.(Deformation and destruction of materials and nanomaterials: Collection of materials VII int. conf.)M: IMET RAN,2017. 515–517 (in Russ).

Shatrov A.S.Kokarev V.N. Vysokoeffektivnyye legkiye pogruzhnyye mnogostupenchatyye elektrotsentrobezhnyye nasosy dlya dobychi nefti v oslozhnennykh usloviyakh(High efficiency lightweight submersible multistage electric centrifugal pumps for oil production in difficult conditions).Neftegazovyye tekhnologii i analitika= Oil and gas technologies and analytics. 2018.14-27 (in Russ).

Patel J.L., Saka N. Microplasmic coatings. American Ceramic Society Bulletin.2001.80(4).27–29 (In Eng.).

Pezzato L., Rigon M., Martucci A., Brunelli K., Dabalà M. Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys. Surface and Coating Technology. 2019. 366. 114–123. https://doi.org/10.1016/j.surfcoat.2019.03.023 (In Eng.).

Matykina E., Arrabal R., Pardo A., Mohedano M., Mingo B., Rodriguez I., Gonzalez J. Energy-efficient PEO process of aluminium alloys. Materials Letters. 2014. https://doi.org/10.1016/j.matlet.2014.04.077 (In Eng.).

Yerokhin A.L., Shatrov A.S., Samsonov V., Shashkov P., Pilkington A., Leyland A., Mathews A.Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surf. Coat. Technol. 2005. 199. 150-157 (In Eng.).

Matykina E., Arrabal R., Skeldon P., Thompson G.E. Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium.Electrochimica Acta. 2009. 54.6767–6778.https://doi.org/10.1016/j.electacta.2009.06.088 (In Eng.).

Hussein R.O., Nie X., Northwood D.O. Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surface andCoatings Technology. 2010. 205. 1659–1667. https://doi.org/10.1016/j.surfcoat.2010.08.059

(In Eng.).

Jaspard-Mécuson F., Czerwiec T., Henrion G., Belmonte T., Dujardin L., Viola A., Beauvir J. Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process. Surface and Coatings Technology. 2007. 201. 8677–8682. https://doi.org/10.1016/j.surfcoat.2006.09.005 (In Eng.).

Zh. M. Ramazanova, K. J. Kirgizbaeva, M. G. Zamalitdinova, I. P. Tkacheva, A. G. Tolesh. Influence of regimes of plasma-electrolytic process on porosity and morphology of oxide coating. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu. 2017. 2.41-45. http://kims-imio.kz/wpcontent/uploads/2018/03/ilovepdf_com-43-47.pdf (In Eng.).

Fatkullin A.R., Parfenov E.V., Yerokhin A.L., Lazarev D. M., Matthews A. Effect of positive and negative pulse voltages on surface properties and equivalent circuit of the plasma electrolytic oxidation process [J]. Surface and Coatings Technology. 2015. 284. 427−437 (In Eng.).

MA Ying, ZHAN Hua, MA Yue-zhou, LÜ Wei-ling, FENG Jun-yan, GAO Wei Effects of electrical parameters on microstructure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys [J]. The Chinese Journal of Nonferrous Metals. 2010. 20. 1467−1473 (In Eng.).

Ling-yun AN, Ying MA, Xiao-xu YAN, Sheng WANG, Zhan-ying WANG Effects of electrical parameters and their interactions on plasma electrolytic oxidation coatings on aluminum substrates. Trans. Nonferrous Met. Soc. China. 2020. 30. 883−895. https://doi.org/10.1016/S1003-6326(20)65262-1 (In Eng.).

Nan Xiang, Ren-guo Song, Jun-jie Zhuang, Ruo-xi Song, Xiao-ya LU, Xu-ping SU Effects of current density on microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy. Trans. Nonferrous Met. Soc. China.2016. 26. 806−813. https://doi.org/10.1016/S1003-6326(16)64171-7 (In Eng.).

Liang J., Hu L.T., Hao J.C. Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters. Appl. Surf. Sci. 2007. 253. 6939–6945 (In Eng.).

Wei C.B, Tian X.B., Yang S.Q., Wang X.B., Fu K.Y., Chu P.K. Anode current effects in plasma electrolytic oxidation. Surf. Coat. Technol.2007. 201.5021–5024 (In Eng.).

Shuaixing Wang, Xiaohui Liu, Xiaole Yin, Nan Du Influence of electrolyte components on the microstructure and growthmechanism of plasma electrolytic oxidation coatings on 1060 aluminum alloy. Surface and Coatings Technology. 2020. 381. https://doi.org/10.1016/j.surfcoat.2019.125214 (In Eng.).

KozlovI.A.,VinogradovS.S.,TarasovaK.G.,KulyushinaN.V.,Manchenko V.A. Plazmennoye Elektroliticheskoye Oksidirovaniye Magniyevykh Splavov (obzor)(Plasma Electrolytic Oxidation of Magnesium Alloys (Review)).Aviatsionnyye Materialy I Tekhnologii= Aviation Materials and Technologies. 2019. 1(54). 23-36. http://dx.doi.org/10.18577/2071-9140-2019-0-1-23-36 (in Russ).

Mehdi Javidi, Hossein Fadaee Plasma electrolytic oxidation of 2024-T3 aluminum alloy and investigation onmicrostructure and wear behavior. Applied Surface Science. 2013. 286. 212–219. https://doi.org/10.1016/j.apsusc.2013.09.049 (In Eng.).

Hakimizad A., Raeissi K., Santamaria M., Asghari M. Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in Na2WO4containing solution: From unipolar to soft-sparking regime. Electrochimica Acta.2018. 284. 618-629. https://doi.org/10.1016/j.electacta.2018.07.200 (In Eng.).

Kazem Babaei, Arash Fattah-alhosseini, Maryam Molaei The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review. Surfaces and Interfaces.2020.21.100677. https://doi.org/10.1016/j.surfin.2020.100677 (In Eng.).

Huan-jun XIE, Ying-liang CHENG, Shao-xian LI, Jin-hui CAO, Li CAOWear and corrosion resistant coatings on surface of cast A356 aluminum alloy by plasma electrolytic oxidation in moderately concentrated aluminate electrolytes.Trans. Nonferrous Met. Soc. China. 2017. 27. 336−351. https://doi.org/10.1016/S1003-6326(17)60038-4 (In Eng.).

Chao Yang, Jiayu Zhu, Suihan Cui, Pinghu Chen, Zhongcan Wu, Zhengyong Ma, Ricky K.Y. Fu, Xiubo Tian, Paul K. Chu, Zhongzhen Wu Wear and corrosion resistant coatings prepared on LY12 aluminum alloy by plasma electrolytic oxidation.Surface and Coatings Technology. 2021.409. 126885. https://doi.org/10.1016/j.surfcoat.2021.126885 (In Eng.).

Lu X.P., Mohedano M., Blawert C., et al. Plasma electrolytic oxidation coatings with particle additions –a review. Surf. Coat. Technol.2016.307. 1165–1182 https://doi.org/10.1016/j.surfcoat.2016.08.055 (In Eng.).

Rogov A.B., Shayapov V.R. The role of cathodic current in PEO of aluminum: Influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra. Applied Surface Science. 2017. 394. 323–332. https://doi.org/10.1016/j.apsusc.2016.10.115 (In Eng.).

Martin J., Leone P., Nomine A. et al. Influence of electrolyte ageing on the plasma electrolytic oxidation of aluminium. Surf. Coat. Technol. 2015. 269. 36–46 (In Eng.).

Xue W.B., Wu X.L., Li X.J., Tian H. Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte. J Alloys Compd. 2006. 425. 302–306 (In Eng.).

Agureev L., Savushkina S., Ashmarin A., Borisov A., Apelfeld A., Anikin K., Tkachenko N., Gerasimov M., Shcherbakov A., Ignatenko V., Bogdashkina N. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites. Metals. 2018. 8. 459-470. https://doi.org/10.3390/met8060459 (In Eng.).

Shatrov A. S. Kokarev V.N. Innovatsionnaya tekhnologiya plazmennogo elektroliticheskogo oksidirovaniya (PEO) i sozdaniye novogo konstruktsionnogo materiala –topokompozita(Innovative technology of plasma electrolytic oxidation (PEO) and creation of a new structural material -topocomposite). Armaturostroyeniye= Valve construction. 2010. 2. 63–67 (in Russ).

ShatrovA.S.,KokarevV.N.Novaya tekhnologiya promyshlennogo proizvodstva iznosostoykikh detaley truboprovodnoy armatury iz alyuminiyevykh splavov s zashchitnym keramicheskim nanostrukturnym pokrytiyem(New technology for industrialproduction of wear-resistant parts of pipeline valves made of aluminum alloys with a protective ceramic nanostructured coating).Vestnik armaturschika= The fitter's bulletin. 2014. 6(19) (in Russ).

Hussein R.O., Northwood D.O. Production of Anti-Corrosion Coatings on Light Alloys (Al, Mg, Ti) by Plasma-Electrolytic Oxidation (PEO). Developments in Corrosion Protection. 2014. 201-239. https://doi.org/10.5772 / 57171 (In Eng.).

Jiang B.L., Wang Y.M. Plasma electrolytic oxidation treatment of aluminium and titanium alloys. Woodhead Publishing Limited. 2010. 110-154 (In Eng.).

Krishna L.R., Purnima A.S., Sundararajan G.A.Comparativestudy of tribological behavior of microarc oxidation and hard-anodized coatings. Wear. 2006.261. 1095–1101 (In Eng.).

Zhang P., Nie X., Hu H., Wear and Galvanic Corrosion Protection of Mg alloy via Plasma Electrolytic Oxidation Process for Mg Engine Application.SAE Technical Paper.2009.https://doi.org/10.4271/2009-01-0790 (In Eng.).

Frauchiger V.M., Schlottig F., Gasser B.,Textor M.Anodic plasma–chemical treatment of CP titanium surfaces for biomedical applications.Biomaterials. 2004. 25.593–606 (In Eng.).

Goueffon Y., Arurault L., Mabruc C., Tonond C., Guiguea P., Black anodic coatings for space applications: study of the process parameters, characteristics and mechanical properties.Journal of Materials Processing Technology. 2009. 209. 5145–5151 (In Eng.)

Downloads

Published

2021-07-14

How to Cite

Yeshmanova, G., Smagulov, D., & Carsten, B. (2021). Plasma electrolytic oxidation technology for producing protective coatings of aluminum alloys. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 317(2), 78–93. https://doi.org/10.31643/2021/6445.21