Mathematical model of the formation of barite-lead mineralization of the Ushkatyn III deposit (Central Kazakhstan)

Authors

  • N. Askarova Abylkas Saginov Karaganda Technical University
  • V. Portnov Abylkas Saginov Karaganda Technical University
  • G. Rakhimova Abylkas Saginov Karaganda Technical University
  • A. Maussymbayeva Kazakh multidisciplinary reconstruction and development institute (КazMRDI)
  • R. Madisheva Kazakh multidisciplinary reconstruction and development institute (КazMRDI)

DOI:

https://doi.org/10.31643/2024/6445.15

Keywords:

Ushkatyn III, stratiform deposits, Atasu type, isotopic composition, mathematical model

Abstract

The genesis of stratiform deposits of lead and barite in sedimentary rocks is of great interest from the point of view of replenishing reserves of polymetallic ores. The aim of the work is to establish the regularity of the hydrogenic formation of ores in limestones, taking into account the influence of the nanosurface of pores and cracks based on a mathematical model of the movement and characteristics of ore-bearing solutions in the pores. The thicknesses of the surface layer of limestones and minerals included in the ore-containing strata and sulfide minerals are calculated. The results indicate that they are nanostructures with special physical properties different from the rest of the substance, which is confirmed by the regularity of the formation of a heavy sulfur isotope in ores of various textural types. The influence of hydrotherms with different densities, kinematic viscosity, and velocity on the intensity of mineralization formation in cracks and pores of limestone, as well as the occurrence of new feathering cracks around the fractures of dismemberment, is estimated. The dependence of the hydrothermal flow density on the diffusion of the liquid is established. The equation of kinematic viscosity is derived from the pressure in the solution flow, the velocity of its movement, the mass of particles of ore-forming elements, and sulfur isotopes under thermodynamic conditions of determined Gibbs energies. The relationship of the viscosity of the solution with the surface tension of the nanolayer of limestone particles in cracks and pores is shown, indicating that the greater this energy, the greater the velocity of movement of ore-forming solutions, the fewer branches of newly formed cracks around the dissection crack. The mathematical model is applicable for the numerical analysis of the regularity of mineralization in cracks, taking into account the influence of the nanostructural layer of cracks and pores of limestone in the thermodynamic conditions of the occurrence of an ore-bearing formation.

Downloads

Download data is not yet available.

Author Biographies

N. Askarova, Abylkas Saginov Karaganda Technical University

Ph.D., senior lecturer of the Department of Geology and Exploration of Mineral Resources,  Abylkas Saginov Karaganda Technical University NPJSC, 100027, Karaganda, Republic of Kazakhstan,

V. Portnov, Abylkas Saginov Karaganda Technical University

Doctor of Technical Sciences, Professor of the Department of Geology and Exploration of Mineral Deposits  Abylkas Saginov Karaganda Technical University NPJSC, 100027, Karaganda, Republic of Kazakhstan.

G. Rakhimova, Abylkas Saginov Karaganda Technical University

Ph.D., Associate Professor of the Department of «Building Materials and Technologies»  Abylkas Saginov Karaganda Technical University NPJSC, 100027, Karaganda, Republic of Kazakhstan.

A. Maussymbayeva, Kazakh multidisciplinary reconstruction and development institute (КazMRDI)

Ph.D., Candidate of Technical Sciences, Researcher, Kazakh multidisciplinary reconstruction and development institute (КazMRDI), 100027, Karaganda, Republic of Kazakhstan.

R. Madisheva, Kazakh multidisciplinary reconstruction and development institute (КazMRDI)

Ph.D., Researcher, Kazakh multidisciplinary reconstruction and development institute (КazMRDI), 100027, Karaganda, Republic of Kazakhstan.

References

Antonyuk RM, Ismailov HK. Promyshlennyye mestorozhdeniya metallicheskikh poleznykh iskopayemykh Tsentralnogo Kazakhstana. Geodinamicheskaya pozitsiya. stroyeniye. sostav rud [Industrial minerals minerals of Central Kazakhstan]. Karaganda. 2019,85. (in Russ.).

Brusnitsyn AI, Kuleshov VN, Sadykov SA, Perova EN, Vereshchagin OS. Izotopnyy sostav (δ13C and δ13O) i genezis margantsenosnykh otlozheniy mestorozhdeniya Ushkatyn-III. Tsentralnyy Kazakhstan [Isotopic composition (δ13C and δ13O) and genesis of manganese-bearing deposits of the Ushkatyn-III deposit, Central Kazakhstan]. Lithology and Minerals. 2020; 6:522-548. https://doi.org/10.31857/S0024497X20060026 (in Russ.).

Brusnitsyn AI, Sadykov SA, Perova EN, Vereshchagin OS. Genezis barit-galenitovyh rud na primere kompleksnogo (Fe, Mn, Pb, BaSO4) mestorozhdeniya Ushkatyn-III, Centralnyj Kazahstan: analiz geologicheskih, mineralogicheskih i izotopnyh (d34S,d13C,d18O) dannyh [Genesis of Barite–Galena Ores at the Ushkatyn-III Deposit, Central Kazakhstan: Analysis of Geological, Mineralogical, and Isotopic (δ34S, δ13C, δ18O) Data. GeologyofOreDeposits. 2022; 64(3):247-275. https://doi.org/10.31857/S0016777022030029 (in Russ.).

Askarova NS, Portnov VS, Kopobayeva AN, Roman AT. Feature space of the Atasu type deposits (Сentral Kazakhstan). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytet. Dnipro: Dnipro University of Technology. 2021; 5:5-10. https://doi.org/10.33271/nvngu/2021-5/005

Kurchavov AM, Hamzin BS. Glavnejshie rubezhi rudoobrazovaniya v orogennyh strukturah kaledonid Severnogo i Centralnogo Kazahstana [The main boundaries of ore formation in the orogenic structures of the caledonides of Northern and Central Kazakhstan]Izvestiya NAS RK. Series of Geology and Technical Sciences. 2017; 3:24-34.(in Russ.)

Brusnitsyn AI, Perova EN, Sadykov SA. Barit-svincovoe orudenenie v rifovyh izvestnyakah mestorozhdeniya Ushkatyn-III (Centralnyj Kazahstan): usloviya lokalizacii, sostav, genesis [Barite-lead mineralization in reef limestones of the Ushkatyn-III deposit (Central Kazakhstan): localization conditions, composition, genesis]. Metallogeny of ancient and modern oceans. 2021; 27:44-46.(in Russ.).

Wilkinson JJ. Sediment-hosted zinc-lead mineralization: processes and perspectives. Treatise on geochemistry. Second edition. Amsterdam, Elsevier. 2014; 13:219-250. https://doi.org/10.1016/B978-0-08-095975-7.01109-8

Emsbo P, Seal RR, Breit GN, Diehl SF, ShahAK. Sedimentary exhalative (sedex) zinc-lead-silver deposit model. U.S. Geological Survey Scientific Investigations Report. 2016; 2010-5070:57. https://doi.org/10.3133/sir20105070N

Vinogradov VI. Rol osadochnogo cikla v geohimii izotopov sery [The role of the sedimentary cycle in the geochemistry of sulfur isotopes]. М.: Science. 1980,192. (in Russ.).

Johnson CA, Emsbo P, Poolw FG, Rye PR. Sulfur-and oxygen-isptopes in sediment-hosyed stratiform barite deposits. Geochim Cosmochim Acta. 2009; 73:133-147. https://doi.org/10.1016/j.gca.2008.10.011

Seal RR. Sulfur isotope geochemistry of sulside minerals. Reviews in mineralogy and geochemistry. 2006; 61:633-677. https://doi.org/10.2138/rmg.2006.61.12

Vereshchagin OS, Britvin SN, Perova EN, Brusnitsyn AI, Polekhovsky YS, Shilovskikh VV, Bocharov VV, van der Burgt A, Cuchet S, Meisser N. Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, Central Kazakhstan, and metamorphic rocks of the Wanni glacier, Switzerland. American Mineralogist. 2019; 104:1469-1480. https://doi.org/10.2138/am-2019-7028

Griffith EM, Paytan A. Barite in the ocean –occurence, geochemistry and palaeoceanographic applixations. Sedimentology. 2012; 59:1817-1835. https://doi.org/10.1111/j.1365-3091.2012.01327.x

Hoefs J. Stable isotope geochemistry. Berlin Heidelberg: Springer-Verlag. 2018, 437.[15]Cansu Z, Ozturk H. Formation and genesis of Paleozoic sediment-hosted barite deposiys in Turkey. Ore Geology Reviews. 2020; 125:1-16. https://doi.org/10.1016/j.oregeorev.2020.103700

Rekhviashvili SSh, Kishtikova EV, Karmokova Ryu, and etc. K raschetu postoyannoj Tolmena [To calculate the Tolman constant].Letters to the Journal of Technical Physics. 2007; 33(2):1-7. (in Russ.)

Portnov VS,Yurov V, Reva M, Mausymbaeva A, Imanbaeva S. Nanostructures in surface layers of coal matter. Visnyk of Taras Shevchenko National University of Kyiv, Geology. 2021; 4(95):54-62. https://doi.org/10.17771/1728-2713.95.07

Oura K, Lifshits VG, Saranin AA, et al. Vvedenie v fiziku poverhnosti[Introduction to Surface physics]. М.: Science. 2006, 490. (in Russ.).

Yurov VM, Guchenko SA, Laurinas VCh. Tolshina poverhnostnogo sloya, poverhnostnaya energiya i atomnyj obem elementa [Surface layer thickness, surface energy and atomic volume of the element].Physico-chemical aspects of studying clusters, nanostructures and nanomaterials.2018; 10:691-699. https://doi.org/10.26456/pcascnn/2018.10.691 (in Russ.).

Andrievskij RA, Ragulya AV. Nanostrukturnye materialy [Nanostructured materials]. M.: Academy.2005,192.(in Russ.).

Suzdalev IP. Nanotehnologiya: fiziko-himiyananoklasterov, nanostruktur i nanomaterialov [Nanotechnology: physico-chemistry of nanoclusters, nanostructures and nanomaterials]. M.: KomKniga. 2006, 592.(in Russ.).

Kutolin SA. Fizicheskaya himiya mezostruktury[Physical chemistry of mesostructure].Novosibirsk: Publishing House Chem. Lab. NCD. 2015,104.(in Russ.).

Tauson VL,Babkin DN, Pastushkova TM, Smagunov NV, Voronova IYu, Menshikov VI, Bryanskij NV, Lipko SV, Arsentev KYu. Dvojstvennye koefficienty raspredeleniya mikroelementov v sisteme «mineral-gidrotermalnyj rastvor» [Dual distribution coefficients of trace elements in the mineral-hydrothermal solution system]. Geochemistry. 2016; 2:165-181. https://doi.org/10.7868/s0016752516020060(in Russ.).

Mullagaliyeva LF, Baimukhametov SK, Portnov VS, Yurov VM, Ibragimova DA. Nanostructures of coal beds in the Sherubaynurinsky section of the Karaganda basin. Naukovyi Visnyk Natsionalnoho Universytetu. 2022; 4(190):17-22. https://doi.org/10.33271/nvngu/2022-4/017

Yurov VM, Ibraev NH, Guchenko SA. Eksperimentalnoe opredelenie poverhnostnogo natyazheniya nanochastic i nanoplenok [Experimental determination of the surface tensionof nanoparticles and nanofilms]. News of Universities. Physics. 2011; 54(1/3):335-340. (in Russ.).

Bazhukova IN, Pustovarov VA, Myshkina AV, Ulitko MV. Lyuminescentnye nanomaterialy, dopirovannye redkozemelnymi ionami, i perspektivy ih biomedicinskogo primeneniya (obzor) [Luminescent nanomaterials doped with rare earth ions and prospects for their biomedical application (review)]. Optics and spectroscopy. 2020; 128(12):1938-1957. https://doi.org/10.21883/OS.2020.12.50334.146-20(in Russ.).

Bogdankevich IL, Litvin VO, Loza OT. O sozdanii plazmennogo relyativistskogo svch-generatora bez silnogo magnitnogo polya [On the creation of a plasma relativistic microwave generator without a strong magnetic field].Brief reports on Physics of the Lebedev P.N. Physical Institute of the Russian Academy of Sciences. 2016; 2:19-24.(in Russ.).

Downloads

Published

2023-08-21

How to Cite

Askarova, N., Portnov, V., Rakhimova, G., Maussymbayeva, A. ., & Madisheva, R. (2023). Mathematical model of the formation of barite-lead mineralization of the Ushkatyn III deposit (Central Kazakhstan). Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 329(2), 43–53. https://doi.org/10.31643/2024/6445.15