Research of the production of iron ore sinter from bauxite processing waste

Authors

  • A. Zhunussova Torayghirov University
  • P. Bykov Torayghirov University
  • A. Zhunusov Torayghirov University
  • A. Kenzhebekova Torayghirov University

DOI:

https://doi.org/10.31643/2024/6445.18

Keywords:

Ferrous sand, agglomerate, sintering, charge gas permeability, sintering rate, metal charge, smelting.

Abstract

This article presents the results of a study of the agglomeration of waste alumina ferrous sands and the use of sinter as a substitute for metal charge in steelmaking. At this time, in the process of processing bauxite, JSC "Aluminium of Kazakhstan" produces a large number of fines, which is of great interest to ferrous metallurgy. Wastes from alumina production include a variety of waste sludge, including red, gray sludge, and ferrous sands. According to the chemical composition, ferrous sands can be attributed to iron ore material with a high content of alumina. Most of these problems are eliminated by preliminary agglomeration of fines. In this work, agglomeration studies made it possible to establish the optimal parameters for sintering ferrous sands. When using 10% fuel, the best sintering performance is achieved. The optimal parameters for sintering ferrous sands mixed with other metallurgical wastes are such as productivity - 0.92 t / m2 h, mechanical strength - 80.0%, sintering speed - 19.3 mm/min, yield - 82.0%, the maximum temperature in the layer is 1340 °С. The results of laboratory melt carried out in an induction melting furnace indicate the possibility of using a sinter as a substitute for metal charge in iron and steel smelting. The conducted melting confirms the fundamental possibility of using a sinter, made from waste products of alumina production of ferrous sands, is a man-made charge material that is suitable for use as a 5% additive to the metal charge in the smelting of iron-carbon alloys similar in composition to cast irons.

Downloads

Download data is not yet available.

Author Biographies

A. Zhunussova, Torayghirov University

Student PhD, Department of “Metallurgy”, Torayghirov University, 140008, Lomova street 64, Pavlodar, Kazakhstan.

P. Bykov, Torayghirov University

Candidate of Technical Sciences, Professor, Department of “Metallurgy”, Torayghirov University, 140008, Lomova street 64, Pavlodar, Kazakhstan.

A. Zhunusov, Torayghirov University

Candidate of Technical Sciences. Professor, Department of “Metallurgy”. Torayghirov University, 140008, Lomova street 64, Pavlodar, Kazakhstan.

A. Kenzhebekova, Torayghirov University

Student PhD, Department of “Metallurgy”, Torayghirov University, 140008, Lomova street 64, Pavlodar, Kazakhstan.

References

Ibragimov AT, Budon SV. Razvitie tekhnologii proizvodstva glinozema iz boksitov Kazahstana. Pavlodar.: TOO «Dom pechati». 2010, 304.

Power G, Grafe M, Klauber C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy. 2011; 108(1,2):33-45. https://doi.org/10.1016/j.hydromet.2011.02.006

Klauber C, Grafe M, Power G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy. 2011; 108(1,2):11-32. https://doi.org/10.1016/j.hydromet.2011.02.007

Grafe M, Power G, Klauber C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy. 2011; 108(1-2):60-79. https://doi.org/10.1016/j.hydromet.2011.02.004

Grafe M, Klauber C. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy. 2011; 108(1,2):46-59. https://doi.org/10.1016/j.hydromet.2011.02.005

Bakirov A, Abdullina S, Zhunusov A, Oleynikova N. Preliminary Chemical Activation of Ash Waste with Release of Carbon

Concentrate. Chemical Engineering Transactions. 2021; 8:973-978. https://doi.org/10.3303/CET2188162

Bykov P, Kuandykov A, Zhunusov A. Refining of Primary Aluminum from Vanadium. Defect and Diffusion Forum. 2021; 410:405-410. https://doi.org/10.4028/www.scientific.net/DDF.410.405

Taneez M, & Hurel C. A review on the potential uses of red mud as amendment for pollution control in environmental media. Environmental Science and Pollution Research. 2019; 26:22106-22125. https://doi.org/10.1007/s11356-019 -05576-2

Ujaczki É, Feigl V, Molnár M, Cusack P, Curtin T, Courtney R, & Lenz M. Re‐using bauxite residues: benefits beyond (critical raw) material recovery. Journal of Chemical Technology & Biotechnology. 2018; 93(9):2498-2510. https://doi.org/10.1002/jctb.5687

Zeng H, Lyu F, Sun W, Zhang H, Wang L, Wang Y. Progress on the industrial applications of red mud with a focus on China. Minerals . 2020; 10:773. https://doi.org/10.3390/min10090773

Xue S, Wu Y, Li Y, Kong X, Zhu F, Hartley W, Li X, and Ye Y. Industrial wastes applications for alkalinity regulation in bauxite residue: a comprehensive review. Journal of Central South University; 2010; 26(2):268-288.

Akcil A , Akhmadiyeva N, Abdulvaliyev R, Abhilash, & Meshram P. Overview on extraction and separation of rare earth elements from red mud: focus on scandium. Mineral Processing and Extractive metallurgy review. 2018; 39(3):145-151. https://doi.org/10.1080/08827508.2017.1288116

Hertel T, & Pontikes Y. Geopolymers, inorganic polymers, alkali-activated materials and hybrid binders from bauxite residue (red mud)–Putting things in perspective. Journal of Cleaner Production. 2020; 258:120610. https://doi.org/10.1016/j.jclepro.2020.120610

Yu F, Huangfu L, Wang C, Li C, Yu J, Li W, & Gao S. Recovery of Fe and Al from red mud by a novel fractional precipitation process. Environmental Science and Pollution Research. 2020; 27: 14642-14653. https://doi.org/10.1007/s11356-020-07970-7

Mukiza E, Ling Ling Zhang, Xiaoming Liu, Na Zhang. Utilization of red mud in road base and subgrade materials: A review. Resources, Conservation and Recycling. 2019; 141:187-199. https://doi.org/ 10.1016/j.resconrec.2018.10.031

Khalifa AA, Bazhin VY, Ustinova YV, & Shalabi ME. Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow. Journal o f Mining Institute. 2022; 254:261-270. https://doi.org/10.31897/PMI.2022.18

Pozmogov VA, Kulbdeev EI, Dorofeev DV, Imangalieva LM, Kvyatkovskaya MN. Opredelenie sostava i svojstv zhelezistyh peskov glinozemnogo proizvodstva dlya poiska putej ih pererabotki. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2018; 3:69-77. https://doi.org/10.31643/2018/6445.19

Abdulvaliev RA, Akhmadieva NK, Gladyshev СV, Imangalieva LM, Manapova АИ . The modified red mud reduction smelting. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2018; 306(3):15-20. https://doi.org/10.31643/2018/6445.12

Ahmadieva NK, Abdulvaliev RA, Akchil A, Gladyshev SV, Kul'deev EI. Krasnyj shlam glinozemnogo proizvodstva kak potencial'nyj istochnik dlya polucheniya redkozemel’nyh elementov. Obzor. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2016;4:98-104

Zhunusov А, Tolymbekova L, Abdulabekov Ye, Zholdubayeva Zh, Bykov P. Agglomeration of manganese ores and manganese containing wastes of Kazakhstan. Metallurgija. 2021; 60: (1-2):101-103.

Zhunusov AK, Bykov PO, Kenzhebekova AE, Zhunussova AK, Rahmat Azis Nabawi. Study of the isothermal kinetics of reduction of sinter from mill scale. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2024; 328(1):59-67. https://doi.org/10.31643/2024/6445.0781

Downloads

Published

2023-08-24

How to Cite

Zhunussova, A., Bykov, P., Zhunusov, A., & Kenzhebekova, A. (2023). Research of the production of iron ore sinter from bauxite processing waste. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 329(2), 73–81. https://doi.org/10.31643/2024/6445.18