Demonstration of the feasibility and practical value of direct acoustic measurements in liquid metals
DOI:
https://doi.org/10.31643/2024/6445.13Keywords:
melts, atomic mass, ultrasonic melt, ultrasound absorption, temperature dependences, ultrasound propagation speedAbstract
The temperature dependences of ultrasound absorption and propagation speed in simple semimetals, semiconductors, and semiconductor compounds have been studied in this article. Experimental and theoretical results testify to the microheterogeneity of semimetals and semiconductor melts. Generalization and analysis of experimental data on the absorption and propagation speed of ultrasound in melts based on D.I. Mendeleev periodic law clearly indicate the presence of micro-groups of atoms (clusters) in them, microheterogenizing melts of semimetals and semiconductors. The urgency of this problem is predetermined by the problem of the liquid state of matter. The dependence of ultrasound absorption and propagation speed on temperature is measured using several groups of samples in paper, each group is heated to a different temperature. It is proved that melts have clustered in their atomic matrix, and so melts with semiconductor properties are micro-inhomogeneous. These results are needed to scale melt sonication to an industrial scale and are needed to provide valuable new insights into temperature dependencies of ultrasound absorption.
Downloads
References
YAO T, KONDIC V. Viscosity of Metallic Liquids. Nature. 1950; 166:483. https://doi.org/10.1038/166483a0
Brenman M, Nuthinson P, Sandster ML, Schosieid P. Calculation of an effective pair interaction potential for Liquid neon from structure factormeasuvements.J.Phys.C. Solid State Phys. 1974; 7(23):411-414.
Havel J, Meloun M. Multiparametric curve fitting. Part. 9, Simultaneous regression estimation of stechiometry and stability constants of complexes.Talanta.1986; 33(5):435-441. https://doi.org/10.1016/0039-9140(86)80111-4
Mitra SK, Nuthinson P, Sandster ML,Schosieid PA. Pair interaction potential for rubidium calculated from thermodynamic and neutron diffraction data.Philos. 1976; 34(6):1087-1100.
Bloek R, Sush IB, BlaserW,et. al. Measurement of thestructure faeton of Liquid rubidium by neutron diffraction up to 1400 K and 200 bar.Ber. Bunsenges. Phys. Chem. 1976; 80(8):718-774.
Regel AR, GlazovVM. Periodic law and physical properties of electronic melts. M.: Nauka.1982, 296.
Poltavtsev YuG. Struktura poluprovodnikovykh rasplavov [Structure of semiconductor melts]. Moscow: Metallurgy. 1984, 176.(in Russ.).
ChinnamRK, FauteuxC, NeuenschwanderJ, Janczak-RuschJ.Evolution of the microstructure of Sn–Ag–Cu solder joints exposed to ultrasonic waves during solidification. Acta Materialia. 2011;59(4):1474-1481. https://doi.org/10.1016/j.actamat.2010.11.011
Kazhikenova SSh, Shaltakov SN, Nussupbekov В. Difference melt model. Archives of Control Sciences.2021;31(LXVII):607-627. https://doi.org/10.24425/acs.2021.138694
MesarosM, Martı́nezOE, BilmesGM, TochoJO.Acoustic detection of laser induced melting of metals. J. Appl. Phys. !997;81(2):1014-1016. https://doi.org/10.1063/1.364196
Hackett L, Miller M, Weatherred S. Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nat Electron. 2023;6:76-85. https://doi.org/10.1038/s41928-022-00908-6
White DL. Amplification of ultrasonic waves in piezoelectric semiconductors. J. Appl. Phys. 1962;33:2547-2554.
EskinDG, TzanakisI, WangF, LebonGSB, SubrotoT, PericleousK, MiJ.Fundamental studies of ultrasonic melt processing. Ultrasonics Sonochemistry. 2019;52:455-467. https://doi.org/10.1016/j.ultsonch.2018.12.028
Kamioka H. Behavior of Tin-Bismuth alloys near melting point found by measurement of sound velocity. J. Phys. Soc. Jap. 1984; 53(4):1349-1355.
Gitis MB, Mikhailov IG, Niyazov S. Sound absorption in liquid sulfur.Acoust. Journal.1970; 16(3):472-473.
Gallego LJ, Rey C, Crimson MJ. A Monte Carlo simulation study of the disjoining pressure in thin fluid films stercally stabilized by terminally attached chains.Mol. Phys. 1991;74(2):383-395.
Abowitz G, Gordon RB. Internal friction in metals: mercury and mercury-thallium Alloys. Acta metal.1962; 10(7):671-679.
Jarzynski L, Litovitz TA. Ultrasonic absorption in Liquid Sodium-Potassium alloys. J.Chem.Phys.1964; 41(5):1290-1296.
Reing EN,Beyer RT. Ultrasonic absorption in liquid selenium.J.Acoust. Soc. Amer.1977; 62(3):582-588.
AiderJL, Wesfreid JE. Characterisation of Longitudinal Görtler Vortices in a Curved Channel Using Ultrasonic Doppler Velocimetry and Visualizations.J. Phys.1996; 6(7)893-906. https://doi.org/10.1051/jp3:1996162
García-ColínLS, De La SelvaSMT.The Stokes-Kirchhoff relation in chemically reacting fluids. Chemical Physics Letters. 1973; 23(4): 611-613. https://doi.org/10.1016/0009-2614(73)89041-4
ShekaariH, GolmohammadiB. Ultrasound-assisted of alkali chloride separation using bulk ionic liquid membrane. Ultrasonics Sonochemistry. 2021;74:105549. https://doi.org/10.1016/j.ultsonch.2021.105549
Liu Y, Yu W, Liu Y. Effect of ultrasound on dissolution of Alin Sn. Ultrasonics Sonochemistry. 2019;50:67-73. https://doi.org/10.1016/j.ultsonch.2018.08.029
ZhengY, Yi TanX, Xiaojuan Wan, ChengX, LiuZh, YanQ.Thermal stability and mechanical response of23Bi Te-based materials for thermoelectric applications. ACS Applied energy materials. 2020;3(3):2078-2089. https://doi.org/10.1021/acsaem.9b02093
ChibaA, OhmasaY, YaoM.Vibrational, single-particle-like, and diffusive dynamics in liquid Se, Te, and 50 50Te Se.J. Chem. Phys. 2003;119(17):9047-9062. https://doi.org/10.1063/1.1615234
Inui M, Kajihara Y, Tsuchiya Y. Peculiar temperature dependence of dynamical sound speed in liquid 50 50Se Teby inelastic x-ray scattering. Journal of Physics Condensed Matter. 2020;32(21):214003. https://doi.org/10.1088/1361-648X/ab6d8e
Shleifer F, Wilson JD, Loring R. Self-consistent theory of polymer dynamic in melts. J. Chem. Phys. 1991;95:8474-8485. https://doi.org/10.1063/1.461277
LiuJM, WuWH, ZhaiW, WeiB.Ultrasonic modulation of phase separation and corrosion resistance for ternary Cu-Sn-Biimmiscible alloy. Ultrasonics Sonochemistry. 2019;54:281-289. https://doi.org/10.1016/j.ultsonch.2019.01.029
KulievBB, RustamovPG, AliyanovMA, KulievEM.Ultrasonic studies on the interaction of SnTe-InTe systems. Physica Status Solidi (a). 1971;4(2):127-130. https://doi.org/10.1002/pssa.2210040241
Pless KG. Ultrasonic measurements in metals in the molten state and upon unsolidification [Ultraschallmessungen in metallen im Geschmolzenen zustand und Beim Enstarren]. Aсustica. 1963; 3:240-244.(in Ger.).
InuiM, KajiharaY, HosokawaSh, MatsudaK, TsuchiyaY.Dynamical sound speed and structural inhomogeneity in liquid Te studied by inelastic x-ray scattering. Journal of Non-Crystalline Solids. 2019; 1: 100006. https://doi.org/10.1016/j.nocx.2018.100006
Yu W, Liu Y, Liu Y, Formation and Evolution of Cu-Sn Intermetallic Compounds in Ultrasonic-Assisted Soldering. J. Electron. Mater. 2019;48:5595-5602. https://doi.org/10.1007/s11664-019-07405-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kazhikenova, S., Shaikhova, G., Shaltakov, S., & Belomestny, D.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.