SwissADME and pkCSM Webservers Predictors: an integrated Online Platform for Accurate and Comprehensive Predictions for In Silico ADME/T Properties of Artemisinin and its Derivatives
DOI:
https://doi.org/10.31643/2023/6445.13Keywords:
SwissADME, artemisinin derivatives, ChemDraw, in silico prediction, pkCSMAbstract
In vivo ADME testing is costly, time-consuming, and puts animal lives at risk, whereas in silico ADME testing is safer, simpler, and faster. This study will use in silico methodologies from SwissADME and pkCSM as an integrated online platform for accurate and comprehensive predictions to determine In Silico ADME/T Properties of Artemisinin and its Derivatives. The investigated compounds' structures were translated into canonical SMILES format and then submitted to the SwissADME and pkCSM webserver tools, which provide free access to different properties of compounds. A compound's ADME/T characteristics are critical for future study and the results obtained will be of beneficial use for researchers. Additionally, the results of this study give great guidance and show that chemical alterations to the reference molecule artemisinin can enhance its ADMET capabilities. The webservers used in this work are free, and several comparison trials show that pkCSM and SwissADME performed are better than a number of other frequently used methods. The designing or engineering of a novel drug molecule primarily requires knowledge of the features of ADME/T of the new drug compound.
Downloads
References
CheongDHJ,TanDWS,WongFWS,TranT. Anti-malarial drug, artemisinin and its derivatives for the treatment ofrespiratory diseases. Pharmacol. Res. 2020;158:104901. https://doi.org/10.1016/j.phrs.2020.104901
TuY. The development of the antimalarial drugs with new type of chemical structure–qinghaosu and dihydroqinghaosu. Southeast Asian J. Trop. Med. Public Health.2004;35:250-251. https://pubmed.ncbi.nlm.nih.gov/15691118/
Cheng C, Ho WE, Goh FY, Guan SP, Kong LR, Lai W-Q, et al. (2011) Anti-Malarial Drug Artesunate Attenuates Experimental Allergic Asthma via Inhibition of the Phosphoinositide 3-Kinase/Akt Pathway. PLoS ONE 6(6): e20932. https://doi.org/10.1371/journal.pone.0020932
MeshnickSR., TaylorTE,KamchonwongpaisanS. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol. Rev. 1996;60:301-315. https://doi.org/10.1128/mr.60.2.301-315.1996
KarunajeewaH.Artemisinins: Artemisinin, Dihydroartemisinin, Artemether and Artesunate, in Milestones in Drug Therapy.2012;157-190. https://doi.org/10.1007/978-3-0346-0480-2_9
Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, HengstlerJ G, Halatsch ME, Volm M, Tew KD, Ross DD, FunkJ O. Molecular modes of action of artesunate in tumor cell lines. Mol. Pharmacol. 2003;64:382-394. https://doi.org/10.1124/mol.64.2.382
EfferthT,DunstanH,SauerbreyA,MiyachiH,ChitambarCR. The anti-malarial artesunate is also active against cancer. Int. J. Oncol. 2001;18:767-773. https://doi.org/10.3892/ijo.18.4.767
XuH,HeY,YangX,LiangL,ZhanZ,YeY,YangX,LianF,SunL. Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes, Rheumatology (Oxford).2007;46:920-926. https://doi.org/10.1093/rheumatology/kem014
EfferthT,RomeroMR,WolfDG,StammingerT,MarinJJ,MarschallM. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis. 2008;47:804-811. https://doi.org/10.1086/591195
DainaA,OlivierM,ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. https://doi.org/10.1038/srep42717
PiresDE,BlundellTL,AscherDB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using Graph-Based Signatures. J. Med. Chem. 2015;58:4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Mpiana PT, Ngbolua KN, Tshibangu DST, Kilembe JT, Gbolo BZ, Mwanangombo DT, Inkoto CL, Lengbiye EM, Mbadiko CM, Matondo A, Bongo GN, Tshilanda DD. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chem. Phys. Lett. 2020;754:137751. https://doi.org/10.1016/j.cplett.20 20.137751
Matondo A, Kilembe JT, Mwanangombo DT, Nsimba BM, Mawete DT, Gbolo BZ, Bongo GN, Ngbolua KN, Tshilanda DD, Tshibangu DST, Mudogo V, Mpiana PT. Facing COVID-19 viaanti-inflammatorymechanism of action: Molecular docking and pharmacokinetic studies of six-antiinflammatory compounds derived from Passiflora edulis. J. Compl. Altern. Med. Res. 2021;12:35-31. https://doi.org/10.9734/JOCAMR/2020/v12i330211
Matondo A, Kilembe JT, Ngoyi EM, Kabengele CN, Kasiama GN, Lengbiye EM, Mbadiko CM, Inkoto CL, Bongo GN, Gbolo BZ, Falanga CM, Mwanangombo DT, Opota DO, Tshibangu DST, Tshilanda DD, NgboluaK-te-N, Mpiana PT. Oleanolic acid, ursolic acid and apigenin from ocimum basilicum as potential inhibitors of the SARS-CoV-2 main protease: A Molecular docking study. Int. J. Path. Res. 2021;6:1-16. https://doi.org/10.9734/IJPR/2021/v6i230156
Tunga KA, Kilembe JT, Matondo A, Yussuf KM, Nininahazwe L, Nkatu FK, Tshingamb MN, Vangu EK, Kindala JT, Mihigo SO, Kayembe SJ, Kafuti YS, Clement A,Taba KM. Computational analysis by molecular docking of thirty alkaloid compounds from medicinal plants as potent inhibitors of SARS-CoV-2 main protease. J.C.C.M.M. 2020;4:487-503. https://doi.org/10.25177/JCCMM.4.4.RA.10699
MvondoJ GM, Matondo A, Mawete DT, Bambi SMN, MbalaBM, LohoholaPO. In Silico ADME/T Properties of Quinine Derivatives using SwissADME and pkCSM Webservers. Int. J. Trop. Dis. Health. 2021;42:1-12, Article no.IJTDH.71544. https://doi.org/10.9734/ijtdh/2021/v42i1130492
National Cancer Institute, Online SMILES Translator, United States; 2020. https://cactus.nci.nih.gov/
LagorceD,DouguetD,MitevaMA,VilloutreixBO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci. Rep. 2017;46277. https://doi.org/10.1038/srep46277
MatondoA,ThomasR,TsaluPV,MukebaCT,MudogoV. α-methylation and α-fluorination electronic effects on theregioselectivity of carbonyl groups of uracil by H and triel bonds in the interaction of U, T and 5FU with HCl and TrH3(Tr = B, Al). J. Mol. Graph. Model. 2019;88:237-246. https://doi.org/10.1016/j.jmgm.2019.02.006
MatondoA,MukebaCT,MuzomweM,NsimbaBM,TsaluPV. Unravelling synand anti-orientation in the regioselectivity of carbonyl groups of 5-fluorouracil an anticancer drug toward proton donors.Chem. Phys. Lett. 2018;712:196-207. https://doi.org/10.1016/j.cplett.2018.09.074
NsimbaBM,BasosilaNL,KayembeJ-CK,MbuyiDM,MatondoA,BongoGN,NgboluaKN,MpianaPT. Semi-empirical Approach on the Methanogenic Toxicity of Aromatic Compounds on the Biogas Production. Asian J. Appl. Chem. Research. 2020;5:34-50. https://doi.org/10.9734/AJACR/2020/v5i430146
KasendeOE,MatondoA,MuyaJT,ScheinerS. Interaction between temozolomide and HCl: preferred binding sites. Comput. Theor. Chem. 2016;1075:82-86. https://doi.org/10.1016/j.comptc.2015.11.017
KasendeOE,MatondoA,MuzomweM,MuyaJT,ScheinerS. Interaction between temozolomide and water: Preferred binding sites. Comput. Theor. Chem. 2014;1034:26-31. https://doi.org/10.1016/j.comptc.2014.02.005
LeeSK,ChangGS,LeeIH,Chung, JE,SungKY,NoKT. The preADME: PCbased program for batch prediction of ADME properties. EuroQSAR. 2014;9:5-10. http://www.bmdrc.org/preadmet/
Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G.; Lee, P.W.; Tang,Y. admetSAR: a comprehensive source and free tool for assessment ofchemical ADMET properties. J. Chem. Inf. Model. 2012;52:3099−3105. https://doi.org/10.1021/ci300367a
AlamriMA. Pharmacoinformatics and molecular dynamic simulation studies to identify potential small-molecule inhibitors of WNK-SPAK/OSR1 signaling that mimic the RFQV motifs of WNK kinases. Arab. J. Chem. 2020;13:5107-5117. https://doi.org/10.1016/j.arabjc.2020.02.010
CerqueiraNM,GestoD,OliveiraEF,Santos-MartinsD,BrásNF,SousaSF,FernandesPA,RamosMJ.Receptor-based virtual screening protocol for drug discovery. Arch. Biochem. Biophys. 2015;582:56–67. https://doi.org/10.1016/j.abb.2015.05.011
MartinYC. A bioavailability score. J. Med. Chem. 2015;48:3164-3170. https://doi.org/10.1021/jm0492002
PratamaMRF,PoerwonoH,SiswodiharjoS. ADMET properties of 5 novel 5 Obenzoylpinostrobin derivatives. J. Basic Clin. Phys. Pharm. 2019, 20190251. https://doi.org/10.1515/jbcpp-2019-0251
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 AL Azzam, K.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.