Determination of optimum parameters of melting and converting of iron-containing melt with the production of vanadium-containing slag
DOI:
https://doi.org/10.31643/2018/6445.7Keywords:
titanomagnetite, iron oxide, carbon, solid-phase reduction, magnetic separation, melting, cast iron, conversion, vanadium, slag.Abstract
The development of a comprehensive technology for processing titanomagnetite concentrate at the Masalsky field will enable the production of an iron-containing alloy and a vanadium product.The processing of the titanomagnetite concentrate of the Masalsky deposit includes rework firing, magnetic separation of the cinder, the melting of a large phase of the reduced metal and the magnetic fraction of the cinder, and further conversion of the cast iron to produce vanadium-containing slag and iron-containing alloy. In this paper, the main direction was to determine the optimal melting parameters and convert the iron-containing melt to produce a vanadium-containing slag. Melting of the magnetic fraction and class +0.1 mm of cinder after reduction firing was carried out at temperatures of 1400, 1450 and 1500 °C. It was found that the optimum melting temperature of the class +0.1 mm and the magnetic fraction of the cinder is 1450 ° C for 20 min. Chemical, mineralogical and electron probe analysis of the obtained alloys showed that after melting the phases become more homogeneous, structured and magnetic. The composition of the glandular matrix consists of 88-90 % of reduced iron and manganese inclusions of about 7%. The aggregative structure of the matrix is due to the presence of rounded, oval separations with a cementing mass, detected at relatively high magnifications. Vanadium in all samples is concentrated in the interstices between the rounded ferruginous segregations. Carbon together with iron is in large inclusions. Composition of the obtained cast iron, wt. %: 88.3-90.2 Feсоmm; 0.286-0.354 V; 0.012-0.236 Ti; 3.54-4.06 C. The cast iron was converted into a laboratory unit consisting of a Kejia chamber furnace, an air flow meter, an air supply pump 2FY-1B. The parameters of the conversion of cast iron were determined: a temperature interval of 1200-1450 °C, a duration of 110 minutes with an air supply of 5-10 liters / min. Vanadium-containing slags of the following composition, wt. %: 13.8-16.05 V2O5; 35.9-42.8 Fecomm; 3.5-11.17 TiO2; 3.78-17.66 SiO2; 1.6-2.9 Cr; 5.95-9.5 Mn. The composition of iron-containing alloys, wt. %: 96.8-97.1 Fecomm; 0.11-0.26 Ti; 0.1-0.14 V; 0.78-1.2 C; 0.1-0.13 Si; 0.035-0.40 Cr; 0.3-0.4 Mn. The cast iron and vanadium slag obtained by us correspond to the existing analogues in terms of the content of impuritycomponents.
Downloads
References
Yuan-yuan Zhu., Ling-yun Yi., Wei Zhao., De-sheng Chen., Hong-xin Zhao., and Tao Qi. Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite. International Journal of Minerals, Metallurgy and Materials. 2016. 23. 8. 898– 905. https://doi.org/10.1007/s12613-016-1305-1
S. M. J. Mirazimia., F. Rashchia., E. Vahidib., and N. Mostoufi. Optimization and Dissolution Kinetics of Vanadium Recovery from LD Converter Slag in Alkaline Media. Russian Journal of Non-Ferrous Metals. 2016. 57. 5. 395–404. https://doi.org/10.3103/S1067821216050126
Saikat Samanta., Manik Chandra Goswami., Tapan Kumar Baidya., Siddhartha Mukherjee., and Rajib Dey. Mineralogy and carbothermal reduction behaviour of vanadium- bearing titaniferous magnetite ore in Eastern India. International Journal of Minerals, Metallurgy and Materials. 2013. 20. 10. 917–924. https://doi.org/10.1007/s12613-013-0815-3
Jiang Diao., Yong Qiao., Xuan Liu., Xie Zhang., Xin Qiu., and Bing Xie. Slag formation path during dephosphorization process in a converter. International Journal of Minerals, Metallurgy and Materials. 2015. 22. 12. 1260–1265. https://doi.org/10.1007/s12613-015-1193-9
M. Lindvall., J. Tikka., M. Berg., G. Ye., D. Sichen. Vanadium Extraction from a Fe–V (2.0 Mass%)–P (0.1 Mass%) Melt and Investigation of the Phase Relations in the Formed FeO–SiO2-Based Slag with 20 Mass% V. Journal of Sustainable Metallurgy. 2017. 3. 4. 808–822. https://doi.org/10.1007/s40831-017-0147-z
Zajko V.P., Zhuchkov V.I., Leont’yev L.I., Karnoukhov V.N., Voronov Yu.I. Tekhnologiya vanadijsoderzhashchikh ferrosplavov. (Technology of vanadium-containing ferroalloys). Moscow.:IKTs «Akademkniga». 2004. 515. (in Russ).
Gazaleyeva G.I., Shikhov N.V., Sopina N.A., Mushketov A.A. Sovremennye tendentsii pererabotki titansoderzhashchikh rud (Modern trends in processing of titanium-containing ores), Trudy nauch.-praktich. konf. s mezhdunarodnym uchastiyem i ehlementami shkoly dlya molodykh uchenykh «Perspektivy razvitiya metallurgii i mashinostroeniya s ispol’zovaniem zavershennykh fundamental’nykh issledovanij i NIOKR» (Proceedings of the scientific-practical. сonf. with international participation and elements of the school for young scientists «Prospects for the development of metallurgy and engineering with the use of completed fundamental research and R & D»). Ekaterinburg, Russia, 2015. 32–3.9 (in Russ).
Leont’yev L.I., Vatolin N.A., Shavrin N.S., Shumakov N.S. Pirometallurgicheskaya pererabotka kompleksnykh rud. (Pyrometallurgical processing of complex ores) Moscow.: Metallurgiya. 1997. 432. (in Russ).
Shuang-yin Chen and Man-sheng Chu. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting. International Journal of Minerals, Metallurgy and Materials. 2014. 21. 3. 225. https://doi.org/10.1007/s12613-014-0889-6
Yi-min Zhang., Ling-yun Yi., Li-na Wang., De-sheng Chen., Wei-jing Wang., Ya-hui Liu., Hong-xin Zhao., and Tao Qi. A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: sodium modification–direct reduction coupled process. International Journal of Minerals, Metallurgy and Materials. 2017. 24. 5. 504– 511. https://doi.org/10.1007/s12613-017-1431-4
Roshchin V.E., Asanov A.V., Roshchin A.V. Vozmozhnosti dvukhstadiynoj pererabotki kontsentratov titanomagnetitovykh rud (Possibilities of two-stage processing of concentrates of titanomagnetite ores), Elektrometallurgiya=Electrometallurgy. 2010. 6. 15–25. (in Russ).
Yu-lei Sui., Yu-feng Guo., Tao Jiang., Xiao-lin Xie., Shuai Wang., and Fu-qiang Zheng. Gas-based reduction of vanadium titano-magnetite concentrate: behavior and mechanisms. International Journal of Minerals, Metallurgy and Materials. 2017. 24. 1. 10. https://doi.org/10.1007/s12613-017-1373-x
Shuai Wang., Yufeng Guo., Tao Jiang., Lu Yang., Feng Chen., Fuqiang Zheng., Xiaolin Xie., and Minjun Tang. Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets. The Minerals, Metals & Materials Society JOM. 2017. 69. 9. 1646– 1653. https://doi.org/10.1007/s11837-017-2367-x
Alizade Z.I., Sadykhov G.B. Termodinamika vosstanovleniya titanomagnetitovykh kontsentratov prirodnym gazom s uchastiem sody (Thermodynamics of reduction of titanomagnetite concentrates by natural gas with participation of soda). Комплексное использование минерального сырья = Complex use of mineral materials. Alma-Ata. 1986. 11. 28–32. (in Russ).
O. I. Nokhrina., I. D. Rozhikhina., V. I. Dmitrienko., M. A. Golodova., and Yu. A. Osipova. Treatment of Steel by Vanadium Converter Slag with Nitrogen Injection. “Izvestiya VUZ. Chernaya Metallurgiya.” 2015. 8. 557–560. https://doi.org/10.3103/S0967091215080136
Voskobojnikov V.G., Kudrin V.A., Yakushev A.M. Obshchaya metallurgiya (General Metallurgy), Uchebnik dlya vuzov. 6-izd. pererab. i dop (Textbook for high schools. - 6- edition., рrocessing and addition). Moscow.: Akademkniga. 2005. 768. (in Russ).
Guo-quan Zhang., Ting-an Zhang., Guo-zhi Lü., Ying Zhang., Yan Liu., and Zhuo-lin Liu. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching. International Journal of Minerals. 2015. 22. 1. 21–26. https://doi.org/10.1007/s12613-015-1038-6
Xin-sheng Li and Bing Xie. Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching. International Journal of Minerals, Metallurgy and Materials. 2012. 19. 7. 595–601. https://doi.org/10.1007/s12613-012-0600-8
Li-ying Liu., Tao Du., Wen-jun Tan., Xin-pu Zhang., and Fan Yang. A novel process for comprehensive utilization of vanadium slag. International Journal of Minerals, Metallurgy and Materials. 2016. 23. 2. 156.https://doi.org/10.1007/s12613-016-1222-3
Grejver N.S., Klushin D.N., Strigin I.A., Troitskij A.V. Osnovy metallurgii. (Basics of Metallurgy). Moscow: State scientific and technical publishing house of literature on ferrous and non-ferrous metallurgy 1961. 24. (in Russ).
Ultarakova A.A., Najmanbayev M.A., Onayev M.I., Maldybayev G.K., Alzhanbayeva N.Sh. Opredelenie optimal’nykh uslovij vosstanovitel’nogo obzhiga i magnitnoj separatsii nizkotitanistykh titanomagnetitov (Determination of optimal conditions for regenerative roasting and magnetic separation of low-titanium titanomagnetites). Kompleksnoe ispol’zovanie mineral’nogo syrya = Complex use of mineral resources. 2016. 1. 37–47. (in Russ).
Lyakishev N.P., Slotvinskij-Sidak N.P., Pliner Yu.L., Lappo S.I. Vanadij v chernoy metallurgii (Vanadium in the ferrous metallurgy). Moscow. Metallurgy. 1983. 35–36. (in Russ)
Junyi Xiang, Qingyun Huang, Xuewei Lv, Chenguang Bai. Effect of Mechanical Activation Treatment on the Recovery of Vanadium from Converter Slag. Metallurgical and Materials Transactions B. 2017. 48. 5. 2759–2767. https://doi.org/10.1007/s11663-017-1033–6
L. A. Smirnov, V. A. Rovnushkin, and A. L. Smirnov. Formation and Phase_Mineralogical Composition of Converter Slags. Russian Metallurgy (Metally). 2015. 3. 191–198. https://doi.org/10.1134/S0036029515030088
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Ultarakova, А., Onayev, M., Kasymzhanov, К., & Esengaziyev, А.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.