Conditions of nitric acid treatment of phosphorus slag for rems recovery and production of precipitated silicon dioxide

Authors

  • A. Akcil Suleyman Demirel University
  • Z.B. Karshigina “Institute of Metallurgy and Ore Beneficiation” JSC
  • Ye.G. Bochevskaya “Institute of Metallurgy and Ore Beneficiation” JSC
  • Z.S. Abisheva Satbayev University

DOI:

https://doi.org/10.31643/2018/6445.4

Keywords:

phosphorus slag, rare earth metals, leaching, kinetics, silicon-containing cake, recovery, purification.

Abstract

Phosphorus slag is the most heavy-tonnage waste of yellow phosphorus production, which is stored in the dump fields for many years causing ecological problems in the regions. One of the relevant and priority directions is rare-earth metals (REMs) production, presence of which in the phosphorus slags allows considering the latter as an acceptable raw material source. Phosphorus slags contain about 30–40 wt% of silicon dioxide, therefore they can serve as a source of production of precipitated silicon dioxide highly required in different industries. The purpose of this work is studying the conditions for REMs recovery from phosphorus slag and further processing of silicon-containing cake to improve a quality of the obtained products.The work shows results of researches on the phosphorus slags’ chemical and phase compositions identification, processes of leaching of phosphorus slag and the obtained silicon-containing cake by nitric acid. Instrumental and chemical methods of phosphorus slag content analysis give following data. It consists of 90–92 % of pseudowollastonite α-CaSiO3, and also there are gyrolite Ca4(H2O)4[Si6O15](OH)2, small amounts of serpentine Mg6[Si4O10](OH)8, hydrated calcium aluminosilicate impurities CaO∙2Al2O3∙2SiO2∙H2O, quartz α-SiO2, calcite CaCO3, hematite Fe2O3, iron phosphate FePO4 and metallic iron with manganese impurity. As a result of kinetic studies of leaching process of phosphorus slag, the apparent activation energy for ΣREMs, calcium, aluminum and iron was determined which amounted to 4.31, 8.53, 7.43 and 12.31 kJ/mol, respectively. This, in combination with value of the Pilling-Bedward Criterion CP-B = 1.1 for orthosilicate acid H4SiO4, indicates that the process is characterized by an intradiffusion region. With a decrease in temperature of nitric acid treatment from 90 to 70 °C, purification degree of precipitated silicon dioxide from iron and aluminium impurities increases. Results of the experimental data will serve as a basis for development of the technology for complex processing of production waste of phosphorus industry and for improving quality of obtained products as REMs concentrate and precipitated silicon dioxide.

Downloads

Download data is not yet available.

Author Biographies

A. Akcil, Suleyman Demirel University

Ph.D., Professor, Professor of Suleyman Demirel University, Engineering Faculty, Isparta, Turkey.

 

Z.B. Karshigina, “Institute of Metallurgy and Ore Beneficiation” JSC

Ph.D., Senior Researcher, Institute of Metallurgy and Ore Benefication, Laboratory of rare scattered elements, Almaty, Kazakhstan.

Ye.G. Bochevskaya, “Institute of Metallurgy and Ore Beneficiation” JSC

Ph.D., Associate Professor, Acting head of the laboratory, Institute of Metallurgy and Ore Benefication, Laboratory of rare scattered elements, Almaty, Kazakhstan.

Z.S. Abisheva, Satbayev University

Dr.Sci.Tech., Professor, Academician of NAS of RK, Director, Mining and Metallurgical Institute named after O. Baikonurov of “KazNRTU named after K.I. Satpayev” NJSC, Almaty, Kazakhstan.

References

Akhmetov I.K., Bobir N.M., Fert M.I., Tyurekhodzhaeva T. Sh. Problema polnoty ispol'zovaniya fosforitnogo syr'ya bassejna Karatau (Issues of complete use of Karatau basin phosphate rock material). Kompleksnoe ispol'zovanie mineral'nogo syr'ya = Complex Use of Mineral Resources. 1981. 2, 5962. (in Russ.).

Jiang X.J., Yun Y., Hu Z.H. Development of non- autoclaved aerated concrete by alkali activated phosphorus slag. Advanced Materials Research. 2011. 250–253, 1147–1152. (in Eng.).

Sun H., Peng Y.Z., Tang J.F., Li N. Preparation of reactive powder concrete having high volume of phosphorous slag powder and Silica Fume. Advanced Materials Research. 2013. 738, 157–160. (in Eng.).

Shi C., Qian J. High performance cementing materials from industrial slags. A review. Resources, Conservation and Recycling. 2000. 29 (3), 195–207. https://doi.org/10.1016/S0921-3449(99)00060-9

Falaleeva N.A., Tyitrin R.S., Kim L.V. Marine concrete from granulated phosphorites slag cement. 11th Pacific/Asia Offshore Mechanics Symp. – PACOMS 2014 Proceedings of the sypm., 2014. 96–99. (in Eng.).

Qian G., Bai S., Ju S., Huang T. Laboratory evaluation on recycling waste phosphorus slag as the mineral filler in hot- mix asphalt. Journal of Materials in Civil Engineering. 2013. 25 (7), 846–850. (in Eng.).

Qi G.H., Peng X.Q. Analysis on the pozzolanic effects of phosphorus slag powder in concrete. Key Engineering Materials. 2011. 477, 112–117. (in Eng.).

Su Y., Li G., Xia J. Experimental study of leaching yellow phosphorus slag by phosphoric acid. Journal of Solid Waste Technology and Management. 2010. 36(1), 39–43. (in Eng.).

Li G., Lin H., Ma Y., Su Y. Experimental study of purifying precipitated silica produced from yellow phosphorus slag. Advanced Materials Research. 2012. 455–456, 503–506. (in Eng.).

Yi Su, Guo Bing Li, Ju Pei Xia. Kinetic study of Fe removal from precipitated silica prepared from yellow phosphorus slag. The Canadian journal of chemical engineering. 2009. 87. 610–613. (in Eng.).

Abisheva Z.S., Bochevskaya Ye.G., Zagorodnyaya A.N., Shabanova T.A., Karshigina Z.B. Technology of phosphorus slag processing for preparation of precipitated silica. Theoretical Foundations of Chemical Engineering. 2013. 47(4), 428–434. (in Eng.).

Redkie ehlementy: rynok daet dobro. Redakts. obzor. (Rare elements: market gives the green light. Editorial Review.).

Mezhdunar. delovoj zhurn. KAZAKHSTAN = Internation. Business Journal KAZAKHSTAN. 2013. 3, 56–58. (in Russ.).

Binnemans K., Jones P.T., Blanpain B., Gerven T.V., Yang Y., Walton A., Buchert M. Recycling of rare earths. Critical review. Journal of cleaner production. 2013. 51. 1–22. (in Eng.).

Cristian Tunsu, Christian Ekberg, Teodora Retegan. Characterization and leaching of real fluorescent lamp waste for the recovery of rare earth metals and mercury. Hydrometallurgy. 2014. 144–145. 91–98. (in Eng.).

Karshigina Z.B., Abisheva, Z.S., Bochevskaya Ye.G, Akcil A., Sargelova E.A. Recovery of rare earth metals and precipitated silicon dioxide from phosphorus slag. J. Minerals Engineering. 2015. 77, 159–166. https://doi.org/10.1016/j.mineng.2015.03.013

Abisheva Z.S., Karshigina Z.B., Bochevskaya Ye.G., Akcil A., Sargelova E.A., Kvyatkovskaya M.N., Silachyov I.Yu. Recovery of rare earth metals as critical raw materials from phosphorus slag of long-term storage. Hydrometallurgy. 2017. 173, 271–282. (in Eng.).

Iler R. K. The chemistry of silica. New York: John Wiley and Sons. 1979. 866. (in Eng.).

Shabanova N.A., Sarkisov P.D. Osnovy zol'-gel' tekhnologii nanodispersnogo kremnezema (Fundamentals of Sol-Gel Technology of Nanodispersed Silica). Moscow: Akademkniga. 2004. 208. (in Russ.).

Pat. 2244035 RU. Sposob kislotnogo razlozheniya silikata kal'tsiya i izvlecheniya tsirkoniya (Method for acid decomposition of calcium silicate and zirconium recovery) / Sinegribov V.A., Yudina T.B. Opubl. 10.01. 2005. bull. 1. (in Russ.).

Vol’dmanG.M., Zelikman, A.N. Teoriya gidrometallurgicheskikh protsessov (Theory of hydrometallurgical processes). Moscow: Intermet Engineering. 2003. 464. (in Russ.)

Bochevskaya Ye.G., Abisheva Z.S., Karshigina Z.B., Turdalieva B.D., Kvyatkovskaya M.N. Povedenie redkozemel'nykh ehlementov pri azotnokislom vyshchelachivanii shlaka fosfornogo proizvodstva (The behavior of rare-earth elements in nitric acid leaching of phosphorus slag). Kompleksnoe ispol'zovanie mineral'nogo syr'ya = Complex Use of Mineral Resources. 2016. 1, 9–16. (in Russ.).

Emmanuel N.M., Knorre D.G. Kurs khimicheskoj kinetiki (Сourse of chemical kinetics). Moscow: Vysshaya shkola. 1984. 463. (in Russ.).

Lazarev A.N. Kolebatel'nye spektry i stroenie silikatov (Fluctuation spectrums and silicate structure). Leningrad: Nauka. 1968. 348. (in Russ.).

Kolessova V.A. Sravnitel'noe issledovanie IK-spektrov pogloshheniya shchelochnykh i Na2O soderzhashchikh kal'cij i magnij-silikatnykh stekol (Comparative research of IR spectrums of absorption of alkali-free and Na2O containing calcium and magnesium-silicate glasses). Izv. Acad. nauk USSR. Ser. neorg. Mater. = News of the Academy of Science of the USSR. Ser. Inorganic Materials, 1966. 2(8), 1497–1504. (in Russ.).

Nakomoto K. Infrared and Raman spectra of inorganic and coordination compounds: Part A: Theory and applications in inorganic chemistry. New York: John Wiley and Sons. 2009. 419. (in Eng.).

Goronovskij I.T., Nazarenko Ju.P., Nekryach E.F. Kratkij spravochnik po khimii. (Quick reference book on chemistry). Kiev: Naukova Dumka, 1974. 128. (in Russ.).

Lajner Ju. A. Kompleksnaya pererabotka alyuminij- soderzhashchego syr'ya kislotnymi sposobami (Complex processing of aluminum-containing raw materials by acid methods). Moscow: Nauka, 1982. 208. (in Russ.).

Nejmark I.E., Shtejnfajn R.Ju. Silikagel', ego poluchenie, svojstva i primenenie (Silica gel, its preparation, properties and application). Kiev: Nauka, 1973. 214.(in Russ.).

Downloads

Published

2018-05-24

How to Cite

Akcil А., Karshigina, Z., Bochevskaya, Y., & Abisheva, Z. (2018). Conditions of nitric acid treatment of phosphorus slag for rems recovery and production of precipitated silicon dioxide. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 305(2), 28–38. https://doi.org/10.31643/2018/6445.4