Hybrid Sorbents for Removal of Arsenic
DOI:
https://doi.org/10.31643/2022/6445.04Keywords:
arsenic, sorption, composites, hybrid sorbents, carbon fiber, chitosan.Abstract
The paper analyzes data on the removal of arsenic by sorption methods using materials that have prospects for large-scale application in water treatment. These materials include transition metal oxides in the micro- and nano-dimensional form, including those in the composition of composite materials with inorganic matrices, or hybrid sorbents in the composition with polymer resins or natural biopolymers. Examples of the use of composite (hybrid) sorbents for the removal of arsenic from solutions with low concentrations (at the level of MPC) are given. The objective of this article was to sum the up-to-date information about the most important features of chitosan-containing and chitosan-carbon materials we developed in view their use in arsenic removal processes at low concentrations to concentrations that meet WHO requirements. The paper presents data on the sorption properties of Mo-containing activated carbon fibers and chitosan-carbon composite materials towards arsenic (V) when it is extracted from bidistilled and tap water under static and dynamic conditions. The factors of the different behavior of the sorbents depending on the form of a biopolymer deposited on the fiber and the stability of the sorbents during the sorption of arsenic are discussed.
Downloads
References
Mohan D, Pittman JCU.Arsenic removal from water/wastewater using adsorbents –A critical review. J. Hazard. Mater. 2007;142(1–2):1–53. http://dx.doi.org/10.1016/j.jhazmat. 2007.01.006
Chiban M, Zerbet M, Carja G, Sinan F. Application of low-cost adsorbents for arsenic removal: A review. J. Environ. Chem. Ecotoxicol.2012;4(5):91–102. https://doi.org/10.5897/JECE11.013
Nicomel NR, Leus K, Folens K. et al. Technologies for arsenic removal from water: current status and future perspectives. Int. J. Environ. Res. Public Health. 2015;13(1):1–24. https://doi.org/10.3390/ijerph13010062
Thakur LS, Semil P. Removal of arsenic in aqueous solution by low cost adsorbent: A short review. Int. J. Chem. Tech. Res. 2013;5(3):1299–1308.
Qu J. Research progress of novel adsorption processes in water purification: A review. J.Environ. Sci. 2008;20:1–13. https://doi.org/10.1016/S1001-0742(08)60001-7
DambiesL. Existing and prospective sorption technologies for the removal of arsenic in water. Sep. Sci. Technol. 2004;39(3):603–627. https://doi.org/10.1081/SS-120027997
Wang X, Liu Y, Zeng J. Removal of As(III) and As(V) from water by chitosan and chitosan derivates: a review. Env. Sci. Pollut Res. 2016;23:13789-13801. https://doi.org/10.1007/s11356-016-6602-8
Jovanovic BM, Vukašinović VL, Veljovic D, Rajakovic L. Arsenic removal from water using low-cost adsorbents –a comparative study. J. Sorb. Chem Soc. 2011;76(10):1437-1452. https://doi.org/10.2298/JSC101029122J
Yadanaparthi SKR, Graybill D, Wandruszka RV. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J. Hazard. Mater. 2009;171(1):1–15. https://doi.org/10.1016/j.jhazmat.2009.05.103
Elwakeel KZ. Environmental application of chitosan resins for the treatment of water and wastewater: a review. J. of Dispersion Sci.Tech.2010;31:213-288. https://doi.org/10.1080/01932690903167178
Hristovski K, Baumgardner A, Westerhoff P. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. J. Hazard. Mater.2007;147(1–2):265–274. https://doi.org/10.1016/j.jhazmat.2007.01.017 Epub 2007 Jan 9.
Guan X, Du J, Meng X, Sun Y. et al. Application of titanium dioxide in arsenic removal from water: A review. J. Hazard. Mater. 2012;215–216(1):1–16. https://doi.org/10.1016/j.jhazmat.2012.02.069
Zang Y, Wu B, XuH. et al. Nanomaterials-enabled water and wastewater treatment. NanoImpact. 2016;3-4:22-39. https://doi.org/10.1016/j.impact.2016.09.004
Gómez-Pastora J, Bringas E, Ortiz I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J.2014;256:187-204. https://doi.org/10.1016/j.cej.2014.06.119
Zang Q, Pan B, Zhang W. et al. Arsenate removal from aqueous media by nanosized hydrafeol ferric oxide-loaded polymeric sorbents: effect of HFO loadings. Ind. Eng. Chem. Res. 2008;47:3957-3962. https://doi.org/10.1021/ie800275k
Sarkar S, Guibal E, Quignard F, SenGupta AK. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications: review. J. Nanopar. Res. 2012;14(2):715.https://doi.org/10.1007/s11051-011-0715-2
TolmachevaVB, ApyariVB, KochukEB, DmitriyenkoSG. Magnitnyye sorbenty na osnove nanochastits oksidov zheleza dlya vydeleniya i kontsentrirovaniya organicheskikh soyedineniy[Magnetic sorbents based on iron oxide nanoparticles for the isolation and concentration of organic compounds]. Zhurnal analiticheskoy khimii =Journal of Analytical Chemistry. 2016;71(4):339-356. https://doi.org/10.7868/S0044450216040071 (in Russ.).
Reddy DHK, Lee S-M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interf. Sci.2013;201–202:68–93. https://doi.org/10.1016/j.cis.2013.10.002
Hu X, Ding Z, Zimmerman AR. et al. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res.2015;68:206–216. https://doi.org/10.1016/j.watres.2014.10.009
Liu S, Huang B, Chai L, Liu Y. et al. Enhancement of As(V) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv. 2017;7:10891-10900. https://doi.org/10.1039/C6RA27341F
SarkarS, Blaney LM, Gupta A, GhoshD, SenGupta AK. Use of ArsenXnp, a hybrid anion exchanger for arsenic removal in remote villages in the Indian Subcontinent. React. Funct. Polym. 2007;67(12):1599-1611. https://doi.org/10.1016/j.reactfunctpolym.2007.07.047
Iesan CM, Capat C, Ruta F, Udrea I. Evaluation of a novel hybrid inorganic/organic polymer type material in the arsenic removal process from drinking water. Water Res.2008;42(16):4327–4333. https://doi.org/10.1016/j.watres.2008.06.011
Möller T, Sylvester P. Effect of silica and pH on arsenic uptake by resin/iron oxide hybrid media. Water Res.2008;42(6-7):1760–1766. https://doi.org/10.1016/j.watres.2007.10.044
Maletskiy ZV, Mitchenko TE. Makarova NV. et al. Sravnitelnaya otsenka sorbtsionnykh svoystv promyshlennykh i eksperimentalnykh gibridnykh materialov po otnosheniyu k primesyam As(III) i As(V) v vode[Comparative assessment of the sorption properties of industrial and experimental hybrid materials with respect to As (III)and As (V) impurities in water]. Voda i vodoochisnіtekhnologії.Naukovo-tekhnіchnіvіstіvіstі= Water&WaterPurification Technologies. Scientific and Technical News.2011–2012;4–1:21–30. http://nbuv.gov.ua/UJRN/Vvt_2011-2012_4-1_5(in Russ.).
Melnikov IO, Rodionova SA, Podobedov RE, Zaytseva NV. Mikrostruktura i sorbtsionnyye svoystva myshiakselektivnykh sorbentov dlya ochistki pityevoy vody [Microstructure and sorption properties of arsenic selective sorbents for drinking water purification].Voda: khimiya i ekologiya =Water: chemistry and ecology.2012;9:70–75. https://rucont.ru/efd/536276(in Russ.).
Melnikov IO, Rodionova SA, Podobedov RE. et al. Selektivnoye izvlecheniye myshiaka iz vodnykh rastvorov s primeneniyem gibridnykh adsorbentov[Selectiveextraction of arsenic from aqueous solutions using hybrid adsorbents]. Voda: khimiya i ekologiya = Water: chemistry and ecology. 2013;12:72–78. https://rucont.ru/efd/536349(in Russ.).
Lubentsova KI.Polucheniye i issledovaniye fiziko-khimicheskikh svoystv kompozitnykh sorbentov na osnove polistirolnykh matrits s nanodispersnymi oksidami zheleza: diss. ...kand. khim. nauk[Preparation and study of the physicochemical properties of composite sorbents based on polystyrene matrices with nanodispersed iron oxides: PhD thesis].Moscow: A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of, 2016, 145. (in Russ.).
Liu B, Wang D, Yu G, Meng X. Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives –a review.J.Ocean Univ. China (Oceanic and Coastal Sea Research).2013;12(3):500–508.https://doi.org/10.1007/s11802-013-21130
Kwok KS, Koong LF, Chen G, McKay G. Mechanism of Arsenic Removal Using Chitosan and Nanochitosan. J. Colloid Interface Sci. 2014;416:1-10. http://dx.doi.org/10.1016/j.jcis.2013.10.031
Zhang L, Zeng Y, Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq. 2016;214:175–191. https://doi.org/10.1016/j.molliq.2015.12.013
Pontoni L, Fabbericino M. Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions—Amini review. Carbohydrate Res.2012;356:86-92. http://dx.doi.org/10.1016/j.carres.2012.03.042
Wang J, Chen C. Chitosan-Based biosorbents modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol.2014;160:129-141. https://doi.org/10.1016/j.biortech.2013.12.110.
Brion-Roby R, Gagnon J, Deschênes J-S, Chabot B. Development and treatment procedure of arsenic-contaminated water using a new and green chitosan sorbent: Kinetic, isotherm, thermodynamic and dynamic studies. Pure Appl. Chem. 2017;90(1),63-77. https://doi.org/10.1515/pac-2017-0305
Rahim M, HMR. Haris M. Application of biopolymer composites in arsenic removal from aqueous medium: A review. J. Radiat. Res. Appl. Sci. 2015;8(2):255–263. https://doi.org/10.1016/j.jrras.2015.03.001
Chassary P, Vincent T, Guibal E. Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use.React. Funct. Polym.2004;60:137–149. https://doi.org/10.1016/j.reactfunctpolym.2004.02.018
Dambies L, Guibal E, Rose A. Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloids Surf.,A. 2000;170(1):19–31.https://doi.org/10.1016/s0927-7757(00)00484-2
Elwakeel KZ. Removal of arsenate from aqueous media by magnetic chitosan resin immobilized with molybdate oxoanions. Int. J. Environ. Sci. Technol. 2014;11:1051–1062.https://doi.org/10.1007/s13762-013-0307-z
Katsoyiannis IA, Zouboulis AI. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res.2002;36(20):5141–5155. https://doi.org/10.1016/S0043-1354(02)00236-1
Chang YY, Song K H, Yang JK. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand. J. Hazard. Mater. 2008;150(3):565–572. https://doi.org/10.1016/j.jhazmat.2007.05.005
Gupta A, Chauhan VS, Sankararamakrishnan N. Preparation and evaluation of iron–chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res.2009;43(15):3862–3870. https://doi.org/10.1016/j.watres.2009.05.040
Li Y, Liu JR, Jia SY. etal. TiO2pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chem. Eng. J. 2012;191:66–74. https://doi.org/10.1016/j.cej.2012.02.058
Zhang QL, Lin YC, ChenX, Gao NY.A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. J. Hazard. Mater.2007;148(3):671–678. https://doi.org/10.1016/j.jhazmat.2007.03.026
Boddu VM, Abburi K, Talbott JL. et al. Removal of arsenic(III) and arsenic(V) from aqueousmedium using chitosan-coated biosorbent. Wаter Res.2008;42(3):633–642. https://doi.org/10.1016/j.watres.2007.08.014
Chen W, ParetteR, Zou J, Cannon FS, Dempsey BA. Arsenic removal by iron-modified activated carbon. Water Res. 2007;41(9):1851–1858. https://doi.org/10.1016/j.watres.2007.01.052
ZangS, Li X, Chen JP. Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal. Carbon. 2010;48(1):60–67. https://doi.org/10.1016/j.carbon.2009.08.030
Pat. US 6,921,732 B2Method of manufacturing a coated zeolite adsorbent.Vempati; Rajan K. 07.26. 2005. 10/796,626
Pat. US 7,291,578 B2Hybrid anion exchanger for selective removal of contaminating ligands from fluids and method of manufacture thereof.SenGupta; Arup K., Cumbal; Luis H.06.11.2007. 10/925,600
Zemskova LA, Voit AV, Didenko NA. Influence of Modification on the Electrochemical Properties and Thermal Oxidation Stability of Carbon Fibers. Fibre Chemistry. 2014;46(3):178 –183. https://doi.org/10.1007/s10692-014-9583-8
Gerente C, McKay G, Andres Y, Le Cloirec P. Interactions of natural aminated polymers with different species of arsenic at low concentrations: Application in water treatment. Adsorption.2005;11:859–863. https://doi.org/10.1007/s10450-005-6036-y
Gerente C, Andres Y, McKay G, Le Cloirec P. Removal of arsenic(V) onto chitosan: From sorption mechanism explanation to dynamic water treatment process. Chem. Eng. J.2010;158(3):593–598. https://doi.org/10.1016/j.cej.2010.02.005
Milot C, McBrien J, Allen S., Guibal E. Influence of physicochemical and structural characteristics of chitosan flakes on molybdate sorption. J. Appl. Polym. Sci.1998;68(4):571-580. https://doi.org/10.1002/(SICI)1097-4628(19980425)68:4<571::AID-APP8>3.0.CO;2-J
Guibal E, Milot C, RoussyJ. Influence of hydrolysis mechanisms on molybdate sorption isotherms using chitosan. Separ. Sci. Technol.2000;35(7):1021–1038. https://doi.org/10.1081/SS-100100208
Guibal E, Milot C, Tobin JM. Metal-anion sorption by chitosan beads: equilibrium and kinetic studies.Ind. Eng. Chem. Res.1998;37:1454–1463. https://doi.org/10.1021/ie9703954
Dambies L, Vincent T, Domard A, GuibalE. Preparation of chitosan gel beads by ionotropicmolybdate gelation.Biomacromolecules. 2001;2:1198–1205. https://doi.org/10.1021/bm010083r
Dambies L, Vincent T, Guibal E. Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances.Water Res.2002;36(15):3699–3710. https://doi.org/10.1016/S0043-1354(02)00108-2
Racoviţă S, Vasiliu S, Popa M. Luca C. Polysaccharide based on micro-and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Rev. Roum. Chim. 2009;54(9):709–718.
Pat. 2281160 RU. Sposob polucheniya kompozitnykh sorbtsionnykh materialov[Method of obtaining composite sorption materials]юZemskovaL. A., ShevelevaI.V., SergiyenkoV.I. Opubl.10.08.2006, 22. (in Russ).
Zemskova LA, Voyt AV, Shlyk DKH, Barinov NN. Modifitsirovannyy molibdenomuglerodnyye volokna dly asorbtsii mysh'yaka(V)[Molybdenum-modified carbon fibers for sorption of arsenic (V)]. Zhurn. prikl. khimii = Russian Journal of Applied Chemistry.2016;89(5):592–596 (in Russ.).
Zemskova LA, Shlyk DKH, Voyt AV,Barinov NN. Kompozitsionnyye sorbenty na osnove khitozana dlya izvlecheniya mysh'yaka[Composite sorbents based on chitosan for arsenic extraction]. Izv. AN. Ser. khim. = Russian Chemical Bulletin.2019;1:9-16. (inRuss.).
ZemskovaLA, ShlykDKH, VoytAV. Izvlecheniye mysh'yaka(V) kompozitsionnymi sorbentami na osnove uglerodnog ovolokna, modifitsirovannogo molibdenom [Extraction of arsenic (V) bycomposite sorbents based on carbonfiber modified with molybdenum]. Sorbtsionnyye i khromatograficheskiye protsessy = Sorption and chromatographic processes. 2016;16(4):457–463. (in Russ.).
Draget KI, Väurn KM, Moen E, Gynnild H, Smidsrød O. Chitosan cross-linked with Mo(VI) рolyoxyanions: a new gelling system. Biomaterials. 1992;13(9):635–638.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Zemskova, L., Shlyk, D., & Barinov, N.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.