Study of hydrogen permeability of membranes coated with various metal films (Review)

Authors

  • Zh.A. Karboz “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University
  • S.K. Dossayeva National Academy of Sciences of the Republic of Kazakhstan

DOI:

https://doi.org/10.31643/2019/6445.28

Keywords:

hydrogen, carbon raw materials, membrane, steam conversion, solubility.

Abstract

Recently, the search for an effective method for producing ultrapure hydrogen has been one of the most urgent tasks, which allows us to solve industrial problems where the use of hydrogen with a purity of more than 99.9999% is critical. Hydrogen makes up 10% of the mass of living systems on our planet, but the main source of its production is carbon raw materials, in particular natural gas, from which ≥90% of the world's hydrogen is produced. One of the most promising methods for the evolution of hydrogen from gas mixtures resulting from steam reforming is single-stage membrane separation to produce ultrapure hydrogen. The development of a membrane for separating hydrogen from gas mixtures is one of the most important tasks of hydrogen energy. We know that the hydrogen molecule is diatomic - H2. Under normal conditions, it is a gas without color, odor or taste. Hydrogen is readily soluble in many metals (Ni, Pt, Pd, etc.), especially in palladium (850 volumes of H2 per 1 volume of Pd). The solubility of hydrogen in metals is associated with its ability to diffuse through them.

Downloads

Download data is not yet available.

Author Biographies

Zh.A. Karboz, “Institute of Metallurgy and Ore Beneficiation” JSC; Satbayev University

Master of Engineering, Satbayev University, Institute of Metallurgy and Ore beneficiation, Almaty, Kazakhstan.

S.K. Dossayeva, National Academy of Sciences of the Republic of Kazakhstan

Head of the Department of Science, National academy of sciences of the Republic of Kazakhstan.

References

Burkhanov G. S., Gorina N. B., Korenovskiy N. L., Roshan N. R., Chistov E. M. Effektivnyye membrany iz splavov palladiya dlya izvlecheniya vysokochistogo vodoroda iz vodorod –soderzhashchikh gazovykh smesey // Sbornik IMET RAN. Moskva. 2013. 413-417 (in Russ.)

Lukomskiy Yu. Ya., Fiziko-khimicheskiye osnovy elektrokhimii. –Gamburg: dom Intellekt. 2008.424 (in Russ.)

Korovin N. V. Toplivnyye elementy i elektrokhimicheskiye energoustanovki. Moskva: MEI. 2005.280 (in Russ.)

Lavrenko V. A. Katodnoye vydeleniye vodoroda na disilitsidakh titana. volframa i molibdena i sootvetstvuyushchikh metallakh. Ukraina: Dopovidi Natsionalnoi akademii nauk Ukraini. 2007. 98-103 (in Russ.)

Gavrilova N. V. Perspektivy ispolzovaniya vodoroda v energetike // Elektrotekhnicheskiye kompleksy i sistemy upravleniya. 2008. 1. 60-65 (in Russ.)

Petukhov I. V. Vliyaniye kontsentratsii komponentov rastvora khimicheskogo nikelirovaniya na topografiyu i mikrorelyef Ni-P pokrytiy // Elektrokhimiya. 2008.44. 2. 161-172 (in Russ.)

Sherman R., Birnbaum H. K. // Met. Trans. A. 1983.14A.203–209 (in Eng.)

Livshits A. I., Notkin M. E., Samartsev A. A. // J. Nucl. Mater.1990.170. 74–94 (in Eng.)

Livshits A., Sube F., Notkin M., Soloviev M., Bacal M. // J.Appl. Phys. 1998. 84. 2558–2564 (in Eng.)

Busnyuk A., Nakamura Y., Nakahara Y. et al. // J. Nucl.Mater.2001. 290–293. 57–60 (in Eng.)

Hatano Y., Watanabe K., Livshits A. et al. // J. Chem. Phys.2007.127. 204 (in Eng.)

Fromm E., Gebhardt E. // Gase und Kohlenstoff in Metallen. 1976. 747 (in Eng.)

Busnyuk A. O., Notkin M. E., Grigoriadi I. P., Alimov V. N., Livshits A. I. Termicheskaya degradatsiya palladiyevogo pokrytiya vodorodopronitsayemykh membran iz niobiya // Zhurnal tekhnicheskoy fiziki. 2010.80. 1 (in Russ.)

Burkhanov G. S.. Gorina N. B.. Kolchugina N. B.. Roshan N. R. // Ros. khim. zhurn. 2006.4. 36 (in Russ.)

Knapton A.G. // Platinum Metals Rev. 1977. 21. 2.44 (in Eng.)

Shu J., Adnot A., Grandjean B. P. A., Kaliaguine S. // Thin Solid Films. 1996. 286.1–2. 72 (in Eng.)

Ali Jawad K., Newson E. J., Rippin D. W. T. // J. Membrane Sci. 1994. 89. 1–2. 171 (in Eng.)

Paglieri S. N., Way J. D. // Separation & Purification. Rev. 2002. 31. 1. 1 (in Eng.)

Panichkin A. V., Mamayeva A. A., Kenzhegulov A. K., Imbarova A. T. Vodorodopronitsayemost membran iz niobiya i tantala. pokrytykh sloyem volframa razlichnoy tolshchiny // Effektivnyye tekhnologii proizvodstva tsvetnykh. redkikh i blagorodnykh metallov. Almaty. 2018. 440(in Russ.). https://doi.org/10.31643/2018-7.38

Chistova T. V. Issledovaniye vodorodopronitsayemosti membran iz splava Pd –40mass. % Cu. // Fiziko-khimiya i tekhnologiya neorganicheskikh materialov.Moskva. 2017. 77-78(in Russ.)

Zhua K., Lia X., Zhua Zh., Chena R., Sua Ya., Guoa J., Rettenmayrb M., Liub D. Analysis of W/Mo alloying on hydrogen permeation performance of dual phase Nb-Ti-Ni alloys based on hydrogen chemical potentials. // Journal of Membrane Science. 2019.584. 290–299(in Eng.). https://doi.org/10.1016/j.memsci.2019.05.004

Panichkin A. V., Mamayeva A. A., Derbisalin A. M., Kenzhegulov A. K., Imbarova A. T. Vliyaniye sostava nanosimykh na poverkhnost plenok tverdykh rastvorov na kharakteristiki vodorodopronitsayemykh membran iz niobiya i tantala. // Kompleksnoye ispolzovaniyemineralnogo syria. 2018. 4. 130-139(in Russ.). https://doi.org/10.31643/2018/6445.39

Panichkin A. V., Derbisalin A. M., Mamayeva A. A., Dzhumabekov D. M., Imbarova A. T . Razrabotka metoda polucheniyagradiyentnykh po sostavu sloyev na poverkhnosti vodorodopronitsayemykh membran na osnove niobiya i tantala. // Kompleksnoye ispolzovaniye mineralnogo syria. 2016. 2. 69-75(in Russ.). https://doi.org/10.31643/2018/166445

Suzuki A., Yukawa H., Nambub T., Matsumotoc Y., Murataa Y. Analysis of pressure–composition–isotherms for design of non-Pd-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement. // Journal of Membrane Science.2016.503. 110–115(in Eng.).http://dx.doi.org/10.1016/j.memsci.2015.12.030

Awakuraa Y., Nambub T., Matsumotoc Y., Yukawaa H. Hydrogen solubility and permeability of Nb–W–Mo alloy membrane. // Journal of Alloys and Compounds. 2011. 509. S. 877–S880 (in Eng.).https://doi.org/10.1016/j.jallcom.2010.10.133

Downloads

Published

2019-09-03

How to Cite

Karboz, Z., & Dossayeva, S. (2019). Study of hydrogen permeability of membranes coated with various metal films (Review). Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 310(3), 48–54. https://doi.org/10.31643/2019/6445.28