Investigation of dielectric and strength properties of organoplastics. Review

Authors

  • A. Yermakhanova «National Center for Space Research and Technology» JSC, Almaty, Kazakhstan
  • A. Sanin Oles Honchar National University, Dnipro, Ukraine
  • M. Meiirbekov «National Center for Space Research and Technology» JSC, Almaty, Kazakhstan
  • B. Baiserikov «National Center for Space Research and Technology» JSC, Almaty, Kazakhstan

DOI:

https://doi.org/10.31643/2022/6445.33

Keywords:

unmanned aerial vehicles, fairing, organoplastics, permittivity, tensile strength.

Abstract

Currently, the production and use of military UAVs in the direction of robotic complexes is actively developing. The purpose and use of military UAVs differ from civilian ones, based on two functions: reconnaissance purpose and a carrier of a warhead. The specifics of military UAVs are their invisibility to enemy radars and ensuring stable transmission of information from the command post. For these purposes, first of all, the UAV material must have the properties of radio transparency. For the production of UAV hulls, power elements, high-strength PCM are needed, which include organoplastics, carbon fiber, fiber glass. The choice of materials for parts of components and assemblies of aviation equipment depends on their operating conditions: operating loads, material properties. Organoplastics (OP) fully meets these requirements among polymer composite materials (PCM). OP have high strength properties along with low dielectric losses (radio transparency) compared to other fiber composites. This paper presents an overview of studies of dielectric and strength properties, as well as ways to improve the mechanical properties of organoplastics. The analysis of the work has shown that for radiotransparent organoplasty, the optimal frequency range of permittivity is 1kHz-12 GHz. The ultimate strength of organoplastics varies in the range from 320 MPa to 1 GPa. The possibilities of increasing the strength of aramid fibers and ways of modifying organoplastics epoxy resins are considered.

Downloads

Download data is not yet available.

Author Biographies

A. Yermakhanova, «National Center for Space Research and Technology» JSC, Almaty, Kazakhstan

PhD, Senior researcher, JSC “National Center for Space Research and Technology”, Almaty, Kazakhstan

A. Sanin, Oles Honchar National University, Dnipro, Ukraine

Doctor of Technical Sciences, Professor, Oles Honchar Dnipro National University, Dnipro, Ukraine

M. Meiirbekov, «National Center for Space Research and Technology» JSC, Almaty, Kazakhstan

PhD student, Researcher, JSC "National Center for Space Research and Technology", Almaty, Kazakhstan

B. Baiserikov, «National Center for Space Research and Technology» JSC, Almaty, Kazakhstan

PhD student, Researcher, JSC "National Center for Space Research and Technology", Almaty, Kazakhstan

References

Rusin MYu. Proyektirovaniye golovnykh obtekateley raket iz keramicheskikh i kompozitsionnykh materialov [Design of rocket head fairings made of ceramic and composite materials]. Moscow, Publ. N.E. Baumana MGTU. 2005;64.(in Russ.).

Kaplun VA. Obtekateli antenn SVCh [Fairings of microwave antennas.]. Moscow, 1974. (in Russ.).

KhippelAR. Dielektriki i volny. [Dielectrics and waves]. Moscow, 1960. (in Russ.).

Nevdyayev LM. Telekommunikatsionnyye tekhnologii. Anglo-russkiy tolkovyy slovar-spravochnik [Telecommunication technologies. English-Russian explanatory dictionary-reference]. Moscow.2002. (in Russ.).

Dyadenko MV, Gelay AI. “Radioprozrachnyye materialy na osnove titanosilikatnykh stekol”Steklo i keramika ["Radio-transparent materials based on titanosilicate glasses" Glass and ceramics]. 2017;8:15-20.(in Russ.).

Shneyderman Ya. A. Novyye materialy antennykh obtekateley samoletov. raket i kosmicheskikh letatelnykh apparatov. “Zarubezhnaya radioelektronika”.[New materials of aircraft antenna fairings. Rockets and spacecraft. "Foreign radio electronics"]. 1971;2. (in Russ.).

Romashin AG, Gaydachuk VE, Karpov YaS, Rusin MYu. Radioprozrachnyyeobtekateliletatelnykhapparatov. Proyektirovaniye. Konstruktsionnyye materialy. Tekhnologiya proizvodstva. Ispytaniya [Radio-transparent fairings of aircraft. Design, construction materials, production technology, testing]. Ucheb. posobiye.Kharkov: Nats. aerokosm. un-t “Khark. aviats. in-t”. 2003;239.(in Russ.).

Chin WS, Lee DG. Binary mixture rule for predicting the dielectric properties ofunidirectional E-glass/epoxy composite, Compos. Struct.2006;74:153-162.

SeoIS, Chin WS, Lee, DG.Characterization of electromagnetic properties of polymeric composite materials with free space method. Compos Struct2004;66:533-542.

Hughes JDH. The carbon fibre/epoxy interface—A review.Composites Science and Technology. 1991;41(1):13-45.

Nikhil Kh, Balasubramanian K. Composite materials for supersonic aircraft radomes with ameliorated radio frequency transmission-a review.The Royal Society of Chemistry.2016 RSC Adv., 2016;6:6709-6718.

Krasyuk VN. Bortovyye antenny giperzvukovykh letatelnykh apparatov: ucheb. posobiye. SPb. SPbGAAP [Onboard antennas of hypersonic aircraft: studies. stipend. St. Petersburg. SPbGAAP.]. 1994;216.(in Russ.).

Analysis of radio links communicationis cum vehiclis aerialibus inmanibus[Analiz radioliniy svyazi s bespilotnymi letatel'nymi apparatami]. https://uav-siberia.com/news/analiz-radioliniy-svyazi-s-bespilotnymiletatelnymi-apparatami/(Access date: 29.08.21).

Bleay SM, Humberstone L. Mechanical and electrical assessment of hybrid composites containing hollow glass reinforcement.Compos Sci Technol.1999;59:1321.

Permittivity characteristics of kevlar, carbon composites, e-glass, and rubber (33% carbon) at x-band (8-12 ghz). https://core.ac.uk/download/pdf/38894283.pdf(Access date: 07.06.2021).

Yao L, Li WB, Wang N, Li W, Guo X, Qiu YP. Tensile, impact anddielectric properties of three dimensional orthogonal aramid/glassfiber hybrid composites. J. Mater. Sci.2007;42:6494-6500.

Grigoryev AD. Novyy volnovodnyy metod izmereniya parametrov dielektrikov [A new waveguide method for measuring the parameters of dielectrics]=Izv. vuzov Rossii. Radioelektronika. 2018;5:33-38.(in Russ.).

Lan Yao, Xin Wang, Fei Liang, Ru Wuc, Bin Hua, Yani Feng, YipingQiu, Modeling and experimental verification of dielectric constants for three-dimensional woven composites.Composites Science and Technology.2008;68:1794-1799.

Choi I, Lee D, Lee DG. Hybrid composite low-observable randome composed of Eglass/aramid/epoxy composite sandwich construction and frequency selectivesurface, Compos. Struct. 2014;117: 98-104.

Xu X, Zhang B, Liu K, et al.Measurements and analysis of the dielectric properties of aramid/epoxycomposites based on free space method under stress conditions. Polymer Testing. 2018;72:55-62.

Tsangaris GM, Psarras GC. Permittivity and loss of composites of epoxy resin and kevlar fibres. Advanced Composites Letters. 1995;4(4):125-128.

Marilyn W,Wardle EI. Aramid Fiber Reinforced Plastics-Properties DuPont de Nemours, Inc., Wilmington, DE, USA Comprehensive Composite Materials ISBN (set): 0-08 0429939 Volume 2; ISBN: 0-080437206); pp. 199-229.

AyatollahiMR, ShadlouS, ShokriehMM.Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites.Eng. Fract. Mech. 2011;78:2620-2632. https://doi.org/10.1016/j.engfracmech.2011.06.021

Marius M, Ria LM.The effect of particle reinforcements on chip formation and machining induced damage of modified epoxy carbon fibre reinforced polymers (CFRPs).Composites Part A: Applied Science and Manufacturing.2018;2(2):137-145. https://doi.org/10.1016/j.compositesa.2021.106793

Akpinar IA, Gurses A, (...), Ozel A. Investigation of mechanical and thermal properties of nanostructure-doped bulk nanocomposite adhesives. Journal of adhesion. 2018;94(11):847-866. https://doi.org/10.1080/00218464.2017.1415809

Meiirbekov MN. Ismailov MB, MankoTA. The effect of the modification of an epoxy resin by liquid oligomers on the physical-mechanical properties of composites.Voprosy khimii i khimicheskoi tekhnologii= Questions of chemistry and chemical technology. 2020;3:122-127. https://doi.org/10.32434/0321-4095-2020-130-3-122-127

Sprenger S, Kothmann MH, Altstaedt V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Composites science and technology. 2014;105:86-95. https://doi.org/10.1016/j.compscitech.2014.10.003

Benni FR, Ara GR, Atik B, Afid N.Effect of glass fibers and aramid fiber on mechanical properties of composite based unmanned aerial vehicle (UAV).Springer Nature Singapore Pte Ltd. 2020:435-440.

Akhil KT, Blaise S, Davis G, K Sh, Genuvin C,Bins P.The study of the mechanical properties of aramid fiber reinforced epoxy resin composite.Applied Mechanics and Materials.2016;852:36-42.

Valueva MI, Zhelezina GF.Polymer Composites Based on Aramid Fibers with Increased Shear Strength for Aircraft Engineering Products.Inorganic Materials: Applied Research, 2019;10(1):70-73.

Wu J,ChengXH. The effect of surface treatment of F-12 aramid fibers with rare earthson the interlaminar shear strength of aramid/epoxy composites.Mechanics of Composite Materials.2005;41(2):181-186.https://doi.org/10.1007/s11029-005-0045-5

Goodarz M, Bahrami SH, Sadighi M,Saber-SamandariS.Low-velocity impactperformance of nanofiber-interlayered aramid/epoxy nanocomposites.Engineering, Composites Part B.2019;173:106975

Zhelezina GF, Tikhonov IV, Chernykh TE, Bova VG, Voynov SI. Aramidnyye volokna tretyego pokoleniya Rusar NT dlya armirovaniya organotekstolitov aviatsionnogo naznacheniya [Aramid fibers of the third generation of Rusar NT for reinforcement of organotectolites for aviation purposes].Plasticheskiye massy. 2019;34:43-46. (in Russ.).

Eksi S, GenelK. Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid aiber reinforced epoxy composites.special issue of the 3rd International conference on computational and experimental science and engineering.2016,No. 3-II Vol. 132 .

Young RJ,Bannister DJ,Cervenka AJ,Ahmad I. Effect of surface treatment upon the pull-out behaviour of aramid fibres from epoxy resins,J. Mater. Sci. 2000;35(8):1939-1947. https://doi.org/10.1023/A:1004718503036

Ismailov МB, Yermakhanova АM. Characterization of the epoxy resin and carbon fiber reinforced plastic stress-strain state by modified carbon nanotubes. Eurasian Chemico-Technological Journal. 2018;2(2):137-145. https://doi.org/10.18321/ectj698

SooJP, MinKS.Effect of chemical treatment of Kevlar fibers on mechanical interfacial propertiesof composites.J. Coll. Interf. Sci.2002;252:249-255. https://doi.org/10.1006/jcis.2002.8479

Luon S, Van OW. Surfacemodification of textile fibres forimprovement of adhesion to polymericmatrices: A review.Journal ofadhesion science and technology.2012;16:1715-1735. https://doi.org/10.1163/156856102320396102

Lin JS. Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion. European Polymer Journal. 2002;38:79-86. https://doi.org/10.1016/S0014-3057(01)00176-8

de Lange PJ, Akker P, Maas AJH ,Knoester A, Brongersma HH. Adhesionactivation of twaron aramid fibresstudied with low-energy ion scatteringand x-ray photoelectron spectroscopy.Surface and Interface Analysis.2001;31:1079-1084. https://doi.org/10.1002/sia.1147

Wu J, Cheng X H. Interfacial studies on the surface modified aramid fiber reinforced epoxy composites. Journal of Applied Polymer Science. 2006;102:4165-4170. https://doi.org/10.1002/app.24460

Gong X, Yuyan L, Youshan W, Zhimin X. Amino graphene oxide/dopamine modified aramid fibers: Preparation,epoxy nanocomposites and property analysis. Polymer. 2019;168:131-137. https://doi.org/10.1016/j.polymer.2019.02.021

Chuyuan J, Chengce Y, Zhenyu M, Yunzhe D. Improving the mechanical and surface properties of aramid fiber by grafting with 1,4-dichlorobutane under supercritical carbon dioxide.Materials.2019;12:3766. https://doi.org/10.3390/ma12223766

Qin ML, Kong HJ, YuMH, Teng CQ. Improved adhesion performances of aramid fibers with vinyl epoxy via supercritical carbon dioxide modification.Materials science andengineering.2017;213:012041. https://doi.org/10.1088/1757-899X/213/1/012041

Li J, Xia YC.Interfacial characteristics of an epoxy composite reinforced with phosphoric acid-functionalized kevlar fibers.Mechanics of composite materials.2010;46(2):211-214. https://doi.org/10.1007/s11029-010-9139-9

Rafał O.The mechanical properties of kevlar fabric/epoxy composites containing aluminosilicates modified with quaternary ammonium and phosphonium salts.Materials.2020;13:3726. https://doi.org/10.3390/ma13173726

Brown JR, Mathys Z. Plasma surface modification of advanced organic fibres. Journal of Materials Science.1997;3:2599-2604. https://doi.org/10.1007/BF01116006

Shaker M, Kamel I, Ko F, Song J.Improvement of the interfacial adhesionbetween Kevlar fiber and resinby using R-F plasma. Journal ofComposites Technology and Research.1996;18(4):249-255.

Palola S, Sarlin E, Kolahgar AS, Koutsos V, VuorinenJ. Microwave induced hierarchical nanostructures on aramid fibers and their influence on adhesion properties in a rubber matrix. Applied Surface Science. 2017;410:145-153.

Wu GM, Hung CH, Lu JC. Effects of plasma treatment on high performance fibres for composites. Sampe. 1999;44:1090-1097

Fan W, Tian H, Wang H, Zhang T,etc all, Enhanced interfacial adhesion of aramid fiber III reinforced epoxy composites via low temperature plasma treatment.Polymer Testing.2018;72:147-156. https://doi.org/10.1016/j.polymertesting.2018.10.003

Kim JG, Ilbeom C, Dai GL, Sung S.Flame and silane treatments for improving the adhesive bonding characteristics of aramid/epoxy composites. Composite Structures.2011;93:2696-2705.

Suresha B, Indushekhara NM, Varun CA, Sachin D, Pranao K. Effect of carbon nanotubes reinforcement on mechanical properties of aramid/epoxy hybrid composites.Materials Today: Proceedings.2021;43(2):1478-1484. https://doi.org/ 10.1016/j.matpr.2020.09.307

Eremeeva NM, Nikiforov AV. Issledovanie svojstv epoksidnyh kompozicij na osnove modificirovannyh cellyulozosoderzhashchih materialov. Molodoj uchenyj.2015;24(1):20-23.

Mostovoj AS,Plakunova EV. Razrabotka ognestojkih epoksidnyh kompozicij i issledovanie ih struktury i svojstv. Perspektivnye materialy.2014;1:37-43

Downloads

Published

2021-03-11

How to Cite

Yermakhanova, A., Sanin, A., Meiirbekov, M., & Baiserikov, B. (2021). Investigation of dielectric and strength properties of organoplastics. Review. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 322(3), 89–102. https://doi.org/10.31643/2022/6445.33

Issue

Section

Engineering and technology