Methods of silica removal from pyrometallurgical processing wastes of ilmenite concentrate

Authors

  • A. Ultarakova Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan
  • Z. Karshyga Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan
  • N. Lokhova Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan
  • M. Naimanbaev Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan
  • A. Yessengaziyev Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan
  • P. Burns University of Notre Dame, “Center for Sustainable Energy” USA, South Bend, USA

DOI:

https://doi.org/10.31643/2022/6445.32

Keywords:

fine dusts, leaching, sodium hydroxide, silicon dioxide, fluorination.

Abstract

This article presents a study on the processing of waste dust from electrical smelting of ilmenite concentrates with the removal of silica from them by alkaline and fluoride methods. The study of the smelting dust leaching by caustic soda solutions included investigation of the effect of sodium hydroxide concentration, process time, temperature, S:L ratio. The optimum conditions of concentrate electric smelting dust leaching - temperature 80-90 °С, duration 90-120 minutes, S:L ratio = 1:5, sodium hydroxide solution concentration 110-115 g/dm3 were determined. The optimum conditions for fluorination of electric melting dust were determined, at which the sublimation degree of silicon fluoride was 84.2 %. Studies have been performed to decomposite obtained silicon-containing sublime in the presence of ammonia agent. The optimum pyrolysis modes that provide the separation of fluoride and silicon oxide - temperature 530-560 °C and duration of 60-80 min have been determined based on the results of thermal analysis and studies on the process duration effect. The silicon oxide content in the obtained product was 96.3%.

Downloads

Download data is not yet available.

Author Biographies

A. Ultarakova, Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan

Candidate of Technical Sciences, Institute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan

Z. Karshyga, Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan

Ph.D., Institute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan

N. Lokhova, Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan

Institute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan

M. Naimanbaev, Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan

Candidate of Technical Sciences, Institute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan

A. Yessengaziyev, Satbayev University,” Institute of Metallurgy and Ore Beneficiation” JSC, Almaty, Kazakhstan

Ph.D. candidate, Institute of Metallurgy and Ore Beneficiation JSC, Almaty, Kazakhstan

P. Burns, University of Notre Dame, “Center for Sustainable Energy” USA, South Bend, USA

Professor of Civil & Environmental Engineering & Earth Sciences, Director, Center for Sustainable Energy at Notre Dame, South Bend, USA

References

Qiongsha Liu, Phil Baker, HanyueZhao. Titanium sponge production technology in China.Proceedings of the 13th World Conference on Titanium;San Diego, USA. 2015;177-182.

Feng Gao, ZuorenNie, Danpin Yang, Boxue Sun, Yu Liu, Xianzheng Gong, Zhihong Wang. Environmental impacts analysis of titanium sponge production using Kroll process in China. Journal of Cleaner Production.2018;174:771-779. https://doi.org/10.1016/j.jclepro.2017.09.240

Chervonyi IF, Listopad DA, IvashchenkoVI, Sorokina LV. O fiziko-khimicheskikh zakonomernostyakh obrazovaniya titanovoy gubki[On physical and chemical mechanisms of titanium sponge formation]. Scientific Proceedings of Donetsk National Technical University. Donetsk, Metallurgy. 2008; 10(141):37-46. (in Russ.).

Teploukhov AS. Predotvrashcheniye zagryazneniya vodnykh ob"yektov otkhodami titano-magniyevogo proizvodstva[Prevention of water pollution caused by titanium-magnesium production wastes]. Abstract of the dissertation of the Ph.D. in Technical Sciences. 2005;143.(in Russ.).

Handbook of Extractive Metallurgy, Edited by FathiHabashi, WILEY-VCH, Heidelberg, Germany. 1984; 4:584-660.

Aldashov BA, Lisitsa VI. Utilizatsiya otkhodov pererabotki fosforitov Karatau –put' k konkurentosposobnoy ekonomike i ozdorovleniyu ekologii [Utilisation of Karatau phosphate rock processing waste -the way to a competitive economy and ecological recovery]. Almaty: Nauka. 2007;428.(in Russ.).

Liu M, Qiu X, Miyauchi M, Hashimoto K. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.Journal of the American Chemical Society. 2013;135(27):10064-10072. https://doi.org/10.1021/ja401541k

Sharpe WN, Pulskamp J, Gianola DS. et al. Strain Measurements of Silicon Dioxide Microspecimens by Digital Imaging Processing. Exp Mech. 2007;47:649-658. https://doi.org/10.1007/s11340-006-9010-z

Description of the Invention to the Patent RU No 2019506. Sposob polucheniya vysokodispersnogo dioksida kremniya[Method for the preparation of highly dispersed silicon dioxide]. Murashkevich AN, et al. Published on 15.09.94. Bulletin No 17. (in Russ.).

Description of Invention to the USSR copyright certificate No 814858 C 01 B 33/12. Sposob polucheniya dvuokisi kremniya[Method of silicon dioxide making]. Narkevich IP, Peczkowski VV, Murashkevich AN, Shepeleva VV. Published on 25.03.81, Bulletin No 11. (in Russ.).

Wang WL, Yang XX, (...), Ding J. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials. Applied Energy. 2009:86(2):170-174. https://doi.org/10.1016/j.apenergy.2007.12.003

Shamsipur M, Barati A, Karami S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon. 2017;124:429-472. https://doi.org/10.1016/j.carbon.2017.08.072

Reznichenko VA, Averin VV, Olonina TV. Titanaty.Nauchnyye osnovy, tekhnologiya proizvodstva[Titanates. Scientific bases, production technology]. Moscow: Nauka. 2010;267. (in Russ.).

Ponomaryova YeI, Ogorodnikov YuI. Kompleksnyye soyedineniy perekhodnykh metallov v shchelochnykh rastvorakh. Shchelochnyye gidrokhimicheskiye sposoby v tsvetnoy metallurgii[Complex compounds of transition metals in alkaline solutions. Alkaline hydrochemical methods in non-ferrous metallurgy]. Alma-Ata, Nauka. 1973;7-10. (in Russ.).

Bunchuk LV, Goldman MM, Ni LP. O kompleksoobrazovanii v sistemeNa2O-Al2O3-Fe2O3-SiO2-H2O. Soobshcheniy 1. Shchelochnyye gidrokhimicheskiye sposoby v tsvetnoy metallurgii[About complexation in Na2O-Al2O3-Fe2O3-SiO2-H2O system. Message I. Alkaline hydrochemical methods in non-ferrous metallurgy]. Almaty, Nauka. 1973;24-26. (in Russ.).

Dmitriev AN, Smorokov AA, Kantaev AС. Ftorammoniynyy sposob pererabotki titanovykh shlakov[Fluorammonium-processing method of titanium slag]. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya= Proceedings of higher educational institutions. Ferrous metallurgy 2021;64(3):178-183. https://doi.org/10.17073/0368-0797-2021-3-178-183(in Russ.).

Downloads

Published

2021-03-11

How to Cite

Ultarakova, A., Karshyga, Z., Lokhova, N., Naimanbaev, M., Yessengaziyev, A., & Burns, P. (2021). Methods of silica removal from pyrometallurgical processing wastes of ilmenite concentrate. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources, 322(3), 79–88. https://doi.org/10.31643/2022/6445.32

Issue

Section

Engineering and technology