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ABSTRACT

This paper presents a study of the structural characteristics of a promising MoSz-based material
obtained by chemical vapor deposition (CVD). Optimization of the synthesis process to obtain the
desired structure is also presented. The optimal parameter for the synthesis of CVD MoS: crystals
was found to be the maximum sulfurization temperature of 780 °C with an exposure time of about
15 minutes, the heating temperature of the sulfur source zone of 250 °C, the distance between
the sulfur and molybdenum sources of 25 cm, and the distance between the molybdenum source
and the substrate was 1.5 cm. The morphology and elemental composition of the obtained
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Accepted: June 9, 2025 samples were studied using scanning electron microscopy (SEM) with energy dispersive X-ray
spectroscopy (EDS). Using SEM, it was revealed that MoS; crystals are formed in a triangular shape
and are evenly distributed over the surface of the substrate. The maximum sizes of crystallites
reach 6 microns. EMF mapping of crystallites confirmed the homogeneous distribution of
molybdenum and sulfur in the structure, revealing only minor variations in composition at the
grain boundaries. The quality and quantity of the sample layer were studied using Raman
spectroscopy. The results showed two characteristic peaks (vibrational modes Ez* and Aig) of
nanoscale MoS,. The peaks have a sharp shape and are located at a distance of =20.9 cm™, which
may indicate the high quality of the crystal structure of the obtained crystallites. The results
obtained emphasize the effectiveness of the chosen approach and the importance of the work for
the development of 2D materials technologies.
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Introduction

Molybdenum disulfide (MoS;) is a layered
material possessing a set of unique properties—
including semiconducting, optical, mechanical, and
catalytic characteristics—that make it a subject of
intensive research. Its electronic properties are
closely related to its structural phase. In its
monolayer form, the semiconducting 2H-MoS;
phase exhibits a direct bandgap of approximately
1.8-1.9 eV, making it a promising candidate for
applications in field-effect transistors and

photodetectors [1]. In contrast, the metallic 1T-MoS;
phase broadens its functionality in catalytic and
energy systems [2].

MoS; is noted for its high mechanical strength,
low friction coefficient, and pronounced catalytic
activity, particularly in the hydrogen evolution
reaction (HER) [[3], [4]]. These attributes have
stimulated their application in tribology and
renewable energy technologies [[5], [6]]. In the field
of nanoelectronics and optoelectronics, MoS; has
been integrated into field-effect transistors, light-
emitting diodes, photodetectors, and solar cells [7].
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Its high absorption and emission efficiency facilitate
the development of fast and sensitive photonic
devices [[8], [9]]. Furthermore, its catalytic
properties can be tailored through surface
modification to enhance device performance [3].
MoS;’s tribological advantages—such as high wear
resistance—make it an effective solid lubricant or
protective coating [5], while in sensing applications,
MoS; demonstrates selective adsorption of target
molecules, which is advantageous for gas and
biosensors [[10], [11]].

In recent years, efforts have been made to
expand MoSy's  application  potential  via
functionalization. Various surface modification
techniques have been shown to tune MoS;'s
physicochemical properties, improving  its
environmental stability and performance in devices
[[12], [13], [14]]. The creation of hybrid structures by
combining MoS, with other two-dimensional (2D)
materials, such as graphene or metal oxide
nanostructures, has been shown to enhance their
electrical conductivity and catalytic activity [[15],
[16], [17], [18]]. In addition, chemical treatments
that increase the density of catalytically active sites
are essential for optimizing electrochemical
performance [[19], [20]].

Different morphologies and structural qualities
of MoS; have been obtained using different
synthesis routes. Among these, chemical vapor
deposition (CVD) is frequently selected because this
method is scalable as well as offers layer thickness
and uniform control [21]. Mechanical exfoliation
[22], hydrothermal synthesis [14], laser ablation, and
other methods, such as ultrasound-assisted or
biological synthesis [[23], [24], [25]], still have a role
in meeting other needs. However, some issues
prevent practical deployment. Phase instability is
one of the bigger ones. However, the 1T- MoS; phase
is more active but undergoes irreversible conversion
to the stable 2H- MoS; phase under normal and
ambient conditions [21]. The Stabilising it chemically
or structurally is an ongoing challenge. One issue is
reproducibility, as growth through CVD is highly
dependent on the experimental parameters such as
temperature, position of precursor and gas flow
dynamics [[26], [27]].

Devices suffer performance limitations as well.
In general most basal planes of MoS; are less
catalytically active and its conductivity is not always
high enough for demanding electronic applications.
But that progress has been made by forming
nanostructures or integration of MoS; with

conductive frameworks such as carbon nanotubes or
graphene [[28], [29], [30]]. CVD has recently been
achieved in large areas on sapphire substrates up to
2-inch diameters, with encouraging thickness
control for synthesis [31]. In particular, high-quality
films for scale-up can be achieved with metal-organic
CVD methods [32]. These approaches are also
compatible with both atomic layer deposition and
with industrial processes, and are thus highly
relevant for practical device fabrication [33].

The emphasis of this work is to optimize CVD
conditions for MoS; synthesis and then evaluate the
effects of such parameters on the film's morphology
and structure. The intention is that it will facilitate
further developments in MoS; electronics, sensing
and catalytic applications.

Experimental Methods

Synthesis of MoS;

In Figure 1, the MoS, synthesis process is
demonstrated. Molybdenum disulfide has been
synthesized by the chemical vapor deposition
technique. The sources of molyndenum (MoOs
99,9%, Sigma Aldrich) and sulfur (S 99,9%, Sigma
Aldrich) have been placed onto quartz boats in the
reaction zone. In the first zone, the sulfur has been
placed, the temperature 250 °C was settled. The
Mo0Os has been placed into the second zone, and the
maximum synthesis temperature of 780 °C was
settled for 15 minutes. Argon (Ar 99,99% lhsan gas)
has been used as the transportation gas. A flow of Ar
at 220 sccm transports sulfur and MoOs vapors to
the silicon substrate (Si). The distance between
sulfur and MoOs was 25 cm, and between MoQOs and
the silicon substrate was 1.5 cm. This configuration
provided optimal conditions for the growth of thin
MoS; on the substrate under the conditions of the
used CVD furnace.

Argon flow

Figure 1 — The process of material synthesis

Investigation of material characteristics

The structural features, such as crystallite shape,
size and spatial distribution, were examined for the
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samples using scanning electron microscopy (SEM).
SEM images were taken using JEOL JSPM-5200
operating at 30 kV accelerating voltage. Energy
dispersive X-ray spectroscopy (EDS)
elemental composition analysis in a JEOL EX-2300 BU
detector attached to the SEM system. To keep the
spectra consistent with the SEM imaging, EDS
spectra were collected under the same conditions.
The layer number and characteristic vibrational
mode identification were investigated by Raman
spectroscopy. The Raman spectra were obtained
using a Jobin-Yvon LabRaman HR800 spectrometer,
with monochromatic light of wavelength 632.8 nm.

measured

Results and discussion

The growth conditions are summarized such
that the morphological characteristics of the
synthesized crystallites are reported in Table 1.
Systematic adjustment of the key deposition
parameters of CVD synthesis, for
deposition time and temperature, and the relative
positioning of substrate and molybdenum and sulfur
sources was done in order to optimize the CVD
process. The resulting crystallites were found to
have thickness, lateral dimensions and were further
confirmed using SEM and Raman spectroscopy.

Figure 2 presents SEM images illustrating the
morphology of the synthesized sample. At a
magnification of 750x (Figure 2a), the overall surface
structure is clearly visible, revealing numerous
triangular-shaped crystallites uniformly distributed
across the substrate. The lateral dimensions of
individual crystallites range from several hundred
nanometers to approximately 6 um, indicating
homogeneous growth and a high degree of
crystallinity. The observed high nucleation density in
certain regions may suggest non-uniform precursor
distribution or localized variations in reaction zone
parameters such as temperature or
concentration [34].

At 9500x magnification (Figure 2b), the fine
structure of triangular crystallites
becomes clearly visible. The well-defined grain
boundaries and uniform crystal surfaces observed in
the image are indicative of the layered nature of the
material and confirm the hexagonal symmetry of the
MoS; crystal lattice. The formation of triangular and
polygonal crystallites can be attributed to

example,

reactant

individual

anisotropic growth behavior during the CVD process.
As Mo and S atoms assemble into hexagonal layers,
differences in growth rates along crystallographic
directions result in distinct crystal shapes. In
particular, when there is an excess of molybdenum,
the crystallites tend to adopt a triangular
morphology, whereas a more balanced distribution
of molybdenum and sulfur leads to more symmetric,
nearly hexagonal forms [35].

The results of elemental mapping, which confirm
the composition and spatial distribution of elements
within the sample structure, are presented in Figure
3. The region selected for analysis is shown in Figure
3a, where triangular and polygonal crystallites are
clearly distinguished against the background of the
substrate. Figure 3b illustrates the
distribution of silicon, which constitutes the
underlying substrate. A decrease in silicon signal
intensity is observed in the areas covered by MoS;
crystallites, indicating uniform deposition of the
material across the substrate surface.

Figure 3c shows the distribution of
molybdenum. The high Mo signal intensity is
localized in the regions where MoS; crystallites have
formed, confirming the presence of molybdenum
disulfide. The gradient in signal intensity suggests
variations in layer thickness, which may be
attributed to growth kinetics under conditions of
limited precursor availability. The lower right panel
displays the distribution of sulfur, which, in contrast
to molybdenum, appears more diffuse. This may
indicate compositional variations across the sample
or the presence of amorphous sulfur species
deposited onto the substrate.

silicon

The formation of well-ordered crystallites is
governed by a combination of factors, including
crystallographic growth anisotropy, thermodynamic
constraints, and nucleation mechanisms [34]. The
hexagonal structure of MoS; promotes preferential
growth along low-energy crystal planes, resulting in
the formation of triangular and hexagonal platelets.
Synthesis temperature plays a particularly critical
role; under optimal conditions, a balance between
nucleation and crystal growth is achieved, enabling
the formation of uniform, highly crystalline
structures. The gradient elemental distributions
observed in the EDS maps further support the kinetic
nature of the deposition process and reflect local
compositional fluctuations during film formation.
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Table 1 — Morphological characteristics of MoS, crystallites under various CVD synthesis conditions

Synthesi Crystallite Si
ynthesis Deposition rystaliite >ize Substrate Position Relative to Mo
Temperature Time (min) (um) and Source Comments
(°C) Thickness (nm)
~1-7 um Distance between sulfur and MoOs [ Uniform circular structures
620 10 Hm, - 25 cm between MoOs and|formed on the substrate surface,
~200-300 nm . . .
substrate - 5 cm with sulfur-rich composition
Distance between sulfur and MoOs . .
Needle-lik truct th
700 10 ~4~7 um, — - 30 cm between MoOs and| oo o ke StUctures - wi
molybdenum enrichment
substrate - 5 cm
Di . .
~2-5 um, istance between sulfur and MoOs Triangular structures formed with
750 10 ~0.7 nm - 30cm, between MoOs and artially developed edges
’ substrate - 1.5 cm P ¥ P g
Distance between sulfur and . .
780 15 2-6 um, MoOs- 25 cm, between MoOs and WeII-d(?flned. triangular
~0.7 nm crystallites with sharp edges
substrate - 1.5 cm

30kVv. X750 20pm 0000 PC-SEM

30kV

X9,500  2um

0000 PC-SEM

Figure 2 — SEM images of the surface morphology of the MoS2 sample: (a) 750x magnification; (b) 9500x magnification

1I]|1m

Mo L 1IJ|Jm

S K

Figure 3 — Elemental mapping of the MoS, sample obtained by energy-dispersive X-ray spectroscopy (EDS)
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The crystal structure was analyzed using Raman
spectroscopy. The spectra were taken at normal
temperature with a single-colour light beam at
632.8 nm wavelength. The measurements were
done using a 100x objective lens, which focused a
laser beam of 1 um diameter. A single crystallite
from the MoS, sample provided the spectra
presented in Figure 4. The optical image of this
sample is shown in the upper-left corner of the
spectra. The spectra show two sharp peaks at
~384 cm™? and ~405 cm™ which are characteristic
vibrational modes of MoS; known as Ey! and Ai,.
These vibration modes are located at a distance of A
= 20.9 cm™™ which shows clear signs of a single layer
of MoS,. The Raman spectra exhibit sharp and
intense E,' and Aj; peaks, indicative of high
crystallinity and structural order in the monolayer
MoS; [36]. A well-defined structure with a high
specific surface area facilitates efficient charge
carrier separation and offers numerous active sites
for hydrogen evolution reactions [37]. The SEM
images show clear edge structures and a uniform
pattern, which shows that this sample has many
surface locations that react efficiently. An effective
resistive gas sensor works through specific edge
locations that preferentially take gas molecules and
alter electrical conductivity [38].

Intensity (arb. unit)

T T T T T
300 330 360 390 420 450 480
Raman shift (cm™®)

Figure 4 — Raman spectrum of the MoSz sample

The two-phonon scattering process at 450 cm™
shows up as a broad peak in the spectrum because
this band appears in layered transition metal
dichalcogenides [35]. The small peak ratio and
narrow lineshapes of Ex' and Aj, prove the high-
quality MoS, monolayer formation.

Conclusion

The combined results of SEM imaging and
elemental mapping indicate that the synthesized
MoS; exhibits high crystallinity, well-defined
structure, and a characteristic morphology shaped
by growth dynamics under CVD conditions.
Elemental distribution analysis confirms the uniform
incorporation of molybdenum and sulfur within the
crystalline domains, along with some compositional
variation at grain boundaries. Raman spectroscopy
further verifies that the obtained sample
corresponds to a monolayer of MoS,. The interpeak
distance of A = 20.9 cm™ between the Ex' and Agq
modes is consistent with high-quality monolayer
formation. SEM analysis corroborates the uniform
spatial distribution of crystallites and their distinct
hexagonal morphology. These findings provide a
solid basis for further optimization of MoS, synthesis
parameters aimed at tailoring morphological
characteristics, which is particularly relevant for
applications in electronic and optoelectronic
devices.
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CVD apicimeH anbiHFaH Mo0Sz-HiH, MOPGONOrUACHIH XaHe KPUCTaNNAbIK,
TOP KYPbINbIMbIH 3epTTey
1OtyHum E.,  YMmupsakos A., “Amutpuesa E., ! Woxranosa A., “>*Kemenbekosa A.

1 @usuko-mexHuKansiK uHcmumym , Cambaes yHusepcumemi, Anmamesl, KazaxcmaH
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TYRIHAEME

Makanaga 6y dasacbiHaH xumuAnbiK TyHAbIpy (CVD) aaicimeH anbiHFaH MoS: HerisiHgeri
nepCcnekTUBabl MaTepuaniblH KYpbIAbIMAbIK cUNaTTamanapbl 3epTresreH. KaxeTTi KypblibiMapl
any YWiH CUMHTE3 NpoueciH OHTaWnaHAbIpy HaTuxKenepi Ae ycbiHbinFaH. CVD aaicimeH MoS:
KpUCTanaapblH CUHTE3eY YLLiH OHTalIbl NapameTp KyKipTTeHYAIH MaKCcumanapl TemnepaTypachl
780 °C, ycTany yakbITbl LLaMameH 15 MUHYT, KYKipT Ke3i aiimafblHbIH, Kbi3Zblpy TemnepaTtypacbl 250
°C, KYKIipT neH monnbaeH Ke3gepiHiH, apacbiHAafbl KAlWbIKTbIK 25 cM, an moanbaeH kesi meH
Makana kengi: 14 aknaH 2025 TeceHil apacbiHAafbl KawbIKTbIK 1,5 cm 6onabl. AnbiHFaH yAarinepaid, mopdonoruacel meH
CapanTamagaH eTTi: 8 cayip 2025 3NEeMEHTTIK  Kypambl CKaHep/eywi 3NeKTPoHAbl MuKpockonua (COM) KaHe 3Heprus-
Kabbinaanabi: 9 maycoim 2025 AVCNEPCUANDBIK pPeHTreH crnekTpockonuacel (34C) aaictepi apKblabl 3epTrengi. COM Hatukenepi
6oibiHWa MoS, Kpuctangapbl ywobypbIwTbl NilWiHAE Ty3ireH KaHe TeceHiw 6eTiHae bipKenki
TapanfaH. KpuctangapabiH, eH, YKeH enwemi 6 MUKpoHFa AeniH xeteai. d[C-kaptorpadusanay
HaTUKECIHAE MOANBAEH MEH KYKIPTTIH KPUCTaN KypblabiMbIHAA BipTEKTI Tapanybl aHbIKTaNAbI, TEK
TYHipLWiKTep WeKapanapbiHAA a3faraH Kypam aybiTKynapbl 6aikanapl. YAriHiH canacbl meH Kabat
caHbl PamaH CMeKTpOoCKOMUACbI apKblibl 3eptrengi. Cnektpae MoS, HaHOKabaTbiHbIH, EKi
cunaTtTamasbiK WoiHbl (Ezg skaHe Aig Tepbenic pexumaepiHae) Tipkeaai, WolHAapAbIH, NilWiHi eTKip
dopmaga, onap =20.9 cm KalWbIKTbIKTA OpHanackaH, 6yn asblHFaH KPUCTanLapablH, OFapbl
KYPbIZIbIMAbIK CanacblH KepceTesi. A/bIHFAH HaTUXKeNep TaHAanfaH TaCINAIH TMIMAINITIH XKaHe
JKYMbBIC HITUMKENEPIHIH, eKi enwemai maTepuanaap TEXHONOTUACIH AAMbITYAaFbl MaHbI3AblbIFbIH
nanengengi.

TyiiiH ce3dep: monnbaeH gucynbduai, CVD cuHTesi, 2d maTepmangap, PamaH cneKTpoCKONUACSHI,
mopdonorus.

Aesmopnap mypansi aKknapam:
OmyH4u Edin MazucmpaHm, dusuxka-mexHUKanslKk uHcmumymesl, Caméaes yHusepcumemi, 050032, Aamamei,
Kasakcman. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361-8099

PhD dokmopaHm, ara folabiMu Kbid3memkep, @Pu3uKa-mexHuKanabiK uHcmumymel, Camb6aes
Ymup3akos ApmaH yHusepcumemi, 050032, Aamamei, KazakcmaH. Email: a.umirzakov@sci.kz; ORCID ID:
https.//orcid.org/0000-0002-0941-0271

dusuKa-mamemamuKka  fbinbiMOapeIHblH — KaHOudamel, npogeccop, PU3UKA-MexXHUKAbIK
Amumpuesa EneHa uHcmumymel, Cambaes  yHusepcumemi, 050032, Aamamel, KasakcmaH. Email:
e.dmitriyeva@sci.kz; ORCID ID: https.//orcid.org/0000-0002-1280-2559

PhD, ®u3uka-mexHukanelK uHcmumymel, Cambaee yHusepcumemi, 050032, Aamamel,

LlloHFanoea Alizyne KasakcmaH. Email: a.shongalova@sci.kz; ORCID ID: https://orcid.org/0000-0002-7352-9007
PhD, ®u3uka-mexHukanelK uHcmumymel, Cambaee yHusepcumemi, 050032, Anmamel,
Kemenbekoea AiiHazynb Kaszakcmar; Manul Technologies, AcmaHa, KazakcmaH. Email: a.kemelbekova@sci.kz ; ORCID ID:

https://orcid.org/0000-0003-4813-8490

Mopdonormnyeckoe u Kpucrannorpapuyeckoe uccnegosaHume MoS;
BbipaweHHbIXx CVD-meToaom

1OtyHum E., * YMupsakos A., 2 Amutpuesa E., * LLionranosa A. , ¥** Kemen6ekosa A.

1 @usuko- mexHuyeckul uHcmumym, Satbayev University, Aamamel, KazaxcmaH
2 Manul technologies, AcmaHa, KazaxcmaH

AHHOTAUMA
B AaHHOI cTaTbe NpefcTaBleHO UCCAe0BaHUE CTPYKTYPHbIX XapaKTePUCTUK MepcrneKTMBHOro

maTtepuana Ha ocHoBe Mo0Sz, NONYYEHHOTO METOLOM XMMUYECKOrO OCaXKAeHUA U3 naposoi dasbl
Moctynuna: 14 ¢pespansa 2025

PeueH3nposaHue: 8 anpens 2025
MpuHATa B neyaTtb: 9 utoHa 2025

(CVD). Takke npeacTaBneHa ONTUMM3aALMA MNPOLLECCA CUHTE3A ANA MNONYYEHUS Kenaemow
CTPYKTYpbl. ONTUManbHbIM NapameTpom cuHTe3a metogom CVD MoS: kpwuctannos 6biio
BbIAB/IEHO MaKcMMasibHaA Temnepatypa cynbdypusaummn 780 °C ¢ BblAEpPKKOW 0KONo 15 MUHYT,
TemnepaTtypa Harpesa 30Hbl UCTOYHMKA cepbl 250 °C, paccTofiHME MEXAY UCTOYHUKAMU Cepbl U

MOI'IMG,EI,EHB 25 cm, a TakxKe pacCToAHne mexXXay UCTOYHMKOM MOI'IMG,EI,EHB MU NOANO0XKU COCTaBNANO
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1,5 cm. Mopdonorua n snemeHTHbI COCTaB Noy4YeHHbIX 06pa3LoB 6blIM U3YYeHbl C MOMOLLbIO
CKaHUpYOLWEN 31eKTPOHHOW MUKpockonuu (COM) ¢ 3HEproaMcrnepcuMoHHbIM PEHTIEHOBCKUM
cnektpockonueit (34C). C nomoubio COIM 6bin10 BbIABAEHO, YTO KpucTannsl MoS; GopmuposaHbl
TpeyronbHoi Gopmbl U paBHOMEPHO pacnpeseneHbl Mo NOBEPXHOCTU NOANOKKM. MaKcMMaibHble
pasmepbl KpUCTaNAMToB gocturatoT 6 mKm. 3[AC-KapTMpoBaHME KPUCTaNIMTOB MNOATBEPAUNO
0HOPOAHOE pacnpeseneHne MoMbAeHa U cepbl B CTPYKTYPE, BbIABMB JWLLb HE3HAYUTE/IbHbIE
BapuaLuMm cocTaBa Ha rpaHuuax 3epeH. Kauectso, KoanyecTBo cnoa obpasua 6bian usyyeHbl ¢
nomollplo PamaHa cnekTpockonuu. Pe3ynbTaTbl NMOKasanu [Ba XapaKkTepHblx nuka (vibrational
modes Exg' and Aig) HaHopasmepHbIXx MoS,. MUKK MMetoT ocTpyto GopMy M PaAcNoNoXKeHbl Ha
pacctoaHnn =20,9 cM™, UTO MOXET CBUAETE/IbCTBOBATb O BbICOKOM KayecTBe KPUCTa//IMYecKom
CTPYKTYPbI NOJIly4EHHbIX KPUCTaNAUTOB. [onyyeHHble pe3ynbTaTbl NOAYEPKNBAOT 3GPEKTUBHOCTD
BbI6PaHHOro NoAXoAa U 3HaYMMOCTb PaboTbl ANA Pa3BUTUA TexHoNOrMi 2D-maTepranos.

Kmiovesble cnoea: pycynsdup monmbaeHa, CVD-cvHTE3, AByMepHble Matepuanbl, PamaHoBCKas
CNEKTPOCKONMA, MOPGONOoTUA.
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