Crossref DOI: 10.31643/2026/6445.38 Engineering and technology

Morphological and Crystallographic Investigation of CVD-Grown MoS₂

¹Otunchi Ye., ¹Umirzakov A., ^{1,2} Dmitriyeva E., ¹Shongalova A., ^{1,2*} Kemelbekova A.

¹ Institute of Physics and Technology, Satbayev University, Almaty, Kazakhstan ² Manul Technologies, Astana, Kazakhstan

* Corresponding author email: a.kemelbekova@satbayev.university

_	
	ADC 10A71
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Received: <i>February 14, 2025</i> Peer-reviewed: <i>April 8, 2025</i> Accepted: <i>June 9, 2025</i>	This paper presents a study of the structural characteristics of a promising MoS ₂ -based material obtained by chemical vapor deposition (CVD). Optimization of the synthesis process to obtain the desired structure is also presented. The optimal parameter for the synthesis of CVD MoS ₂ crystals was found to be the maximum sulfurization temperature of 780 °C with an exposure time of about 15 minutes, the heating temperature of the sulfur source zone of 250 °C, the distance between the sulfur and molybdenum sources of 25 cm, and the distance between the molybdenum source and the substrate was 1.5 cm. The morphology and elemental composition of the obtained samples were studied using scanning electron microscopy (SEM) with energy dispersive X-ray
	spectroscopy (EDS). Using SEM, it was revealed that MoS ₂ crystals are formed in a triangular shape and are evenly distributed over the surface of the substrate. The maximum sizes of crystallites reach 6 microns. EMF mapping of crystallites confirmed the homogeneous distribution of molybdenum and sulfur in the structure, revealing only minor variations in composition at the grain boundaries. The quality and quantity of the sample layer were studied using Raman spectroscopy. The results showed two characteristic peaks (vibrational modes E_{2g}^1 and A_{1g}) of nanoscale MoS ₂ . The peaks have a sharp shape and are located at a distance of ~20.9 cm ⁻¹ , which may indicate the high quality of the crystal structure of the obtained crystallites. The results obtained emphasize the effectiveness of the chosen approach and the importance of the work for the development of 2D materials technologies.
	Keywords: Molybdenum disulfide, CVD synthesis, 2D materials, Raman spectroscopy, morphology.
Otunchi Yedil	Information about authors: Master's student, Institute of Physics and Technology, Satbayev University, 050032, Almaty, Kazakhstan. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361-8099
Umirzakov Arman	PhD candidate, Researcher. Institute of Physics and Technology, Satbayev University, Ibragimov str. 11, 050032, Almaty, Kazakhstan. Email: a.umirzakov@sci.kz ; ORCID ID: https://orcid.org/0000-0002-0941-0271
Dmitriyeva Elena	Candidate of Physico-Mathematical Sciences, Professor, Institute of Physics and Technology, Satbayev University, Ibragimov str. 11, 050032, Almaty, Kazakhstan. Email: e.dmitriyeva@sci.kz ORCID ID: https://orcid.org/0000-0002-1280-2559
Shongalova Aigul	PhD, Institute of Physics and Technology, Satbayev University, Ibragimov str. 11, 050032, Almaty, Kazakhstan, Email: a shonaalova@sci.kz : ORCID ID: https://orcid.org/0000-0002-7352-9007
Kemelbekova Ainagul	PhD, Institute of Physics and Technology, Satbayev University, Ibragimov str. 11, 050032, Almaty, Kazakhstan; Manul Technologies, Astana, Kazakhstan. Email: a.kemelbekova@sci.kz; ORCID ID: https://orcid.org/0000-0003-4813-8490

Introduction

Molybdenum disulfide (MoS₂) is a layered material possessing a set of unique properties including semiconducting, optical, mechanical, and catalytic characteristics—that make it a subject of intensive research. Its electronic properties are closely related to its structural phase. In its monolayer form, the semiconducting 2H-MoS₂ phase exhibits a direct bandgap of approximately 1.8–1.9 eV, making it a promising candidate for applications in field-effect transistors and photodetectors [1]. In contrast, the metallic $1T-MoS_2$ phase broadens its functionality in catalytic and energy systems [2].

MoS₂ is noted for its high mechanical strength, low friction coefficient, and pronounced catalytic activity, particularly in the hydrogen evolution reaction (HER) [[3], [4]]. These attributes have stimulated their application in tribology and renewable energy technologies [[5], [6]]. In the field of nanoelectronics and optoelectronics, MoS₂ has been integrated into field-effect transistors, lightemitting diodes, photodetectors, and solar cells [7]. Its high absorption and emission efficiency facilitate the development of fast and sensitive photonic devices [[8], [9]]. Furthermore, its catalytic properties can be tailored through surface modification to enhance device performance [3]. MoS₂'s tribological advantages—such as high wear resistance—make it an effective solid lubricant or protective coating [5], while in sensing applications, MoS₂ demonstrates selective adsorption of target molecules, which is advantageous for gas and biosensors [[10], [11]].

In recent years, efforts have been made to expand MoS₂'s application potential via Various surface modification functionalization. techniques have been shown to tune MoS₂'s physicochemical properties, improving its environmental stability and performance in devices [[12], [13], [14]]. The creation of hybrid structures by combining MoS₂ with other two-dimensional (2D) materials, such as graphene or metal oxide nanostructures, has been shown to enhance their electrical conductivity and catalytic activity [[15], [16], [17], [18]]. In addition, chemical treatments that increase the density of catalytically active sites are essential for optimizing electrochemical performance [[19], [20]].

Different morphologies and structural qualities of MoS₂ have been obtained using different synthesis routes. Among these, chemical vapor deposition (CVD) is frequently selected because this method is scalable as well as offers layer thickness and uniform control [21]. Mechanical exfoliation [22], hydrothermal synthesis [14], laser ablation, and other methods, such as ultrasound-assisted or biological synthesis [[23], [24], [25]], still have a role in meeting other needs. However, some issues prevent practical deployment. Phase instability is one of the bigger ones. However, the 1T- MoS₂ phase is more active but undergoes irreversible conversion to the stable 2H- MoS₂ phase under normal and ambient conditions [21]. The Stabilising it chemically or structurally is an ongoing challenge. One issue is reproducibility, as growth through CVD is highly dependent on the experimental parameters such as temperature, position of precursor and gas flow dynamics [[26], [27]].

Devices suffer performance limitations as well. In general most basal planes of MoS_2 are less catalytically active and its conductivity is not always high enough for demanding electronic applications. But that progress has been made by forming nanostructures or integration of MoS_2 with conductive frameworks such as carbon nanotubes or graphene [[28], [29], [30]]. CVD has recently been achieved in large areas on sapphire substrates up to 2-inch diameters, with encouraging thickness control for synthesis [31]. In particular, high-quality films for scale-up can be achieved with metal-organic CVD methods [32]. These approaches are also compatible with both atomic layer deposition and with industrial processes, and are thus highly relevant for practical device fabrication [33].

The emphasis of this work is to optimize CVD conditions for MoS_2 synthesis and then evaluate the effects of such parameters on the film's morphology and structure. The intention is that it will facilitate further developments in MoS_2 electronics, sensing and catalytic applications.

Experimental Methods

Synthesis of MoS₂

In Figure 1, the MoS₂ synthesis process is demonstrated. Molybdenum disulfide has been synthesized by the chemical vapor deposition technique. The sources of molyndenum (MoO3 99,9%, Sigma Aldrich) and sulfur (S 99,9%, Sigma Aldrich) have been placed onto quartz boats in the reaction zone. In the first zone, the sulfur has been placed, the temperature 250 °C was settled. The MoO₃ has been placed into the second zone, and the maximum synthesis temperature of 780 °C was settled for 15 minutes. Argon (Ar 99,99% Ihsan gas) has been used as the transportation gas. A flow of Ar at 220 sccm transports sulfur and MoO₃ vapors to the silicon substrate (Si). The distance between sulfur and MoO₃ was 25 cm, and between MoO₃ and the silicon substrate was 1.5 cm. This configuration provided optimal conditions for the growth of thin MoS_2 on the substrate under the conditions of the used CVD furnace.

Figure 1 – The process of material synthesis

Investigation of material characteristics

The structural features, such as crystallite shape, size and spatial distribution, were examined for the

samples using scanning electron microscopy (SEM). SEM images were taken using JEOL JSPM-5200 operating at 30 kV accelerating voltage. Energy dispersive X-ray spectroscopy (EDS) measured elemental composition analysis in a JEOL EX-2300 BU detector attached to the SEM system. To keep the spectra consistent with the SEM imaging, EDS spectra were collected under the same conditions.

The layer number and characteristic vibrational mode identification were investigated by Raman spectroscopy. The Raman spectra were obtained using a Jobin-Yvon LabRaman HR800 spectrometer, with monochromatic light of wavelength 632.8 nm.

Results and discussion

The growth conditions are summarized such that the morphological characteristics of the synthesized crystallites are reported in Table 1. Systematic adjustment of the key deposition parameters of CVD synthesis, for example, deposition time and temperature, and the relative positioning of substrate and molybdenum and sulfur sources was done in order to optimize the CVD process. The resulting crystallites were found to have thickness, lateral dimensions and were further confirmed using SEM and Raman spectroscopy.

Figure 2 presents SEM images illustrating the morphology of the synthesized sample. At a magnification of 750× (Figure 2a), the overall surface structure is clearly visible, revealing numerous triangular-shaped crystallites uniformly distributed across the substrate. The lateral dimensions of individual crystallites range from several hundred nanometers to approximately 6 μ m, indicating homogeneous growth and a high degree of crystallinity. The observed high nucleation density in certain regions may suggest non-uniform precursor distribution or localized variations in reaction zone parameters such as temperature or reactant concentration [34].

At 9500× magnification (Figure 2b), the fine structure of individual triangular crystallites becomes clearly visible. The well-defined grain boundaries and uniform crystal surfaces observed in the image are indicative of the layered nature of the material and confirm the hexagonal symmetry of the MoS₂ crystal lattice. The formation of triangular and polygonal crystallites can be attributed to anisotropic growth behavior during the CVD process. As Mo and S atoms assemble into hexagonal layers, differences in growth rates along crystallographic directions result in distinct crystal shapes. In particular, when there is an excess of molybdenum, the crystallites tend to adopt a triangular morphology, whereas a more balanced distribution of molybdenum and sulfur leads to more symmetric, nearly hexagonal forms [35].

The results of elemental mapping, which confirm the composition and spatial distribution of elements within the sample structure, are presented in Figure 3. The region selected for analysis is shown in Figure 3a, where triangular and polygonal crystallites are clearly distinguished against the background of the silicon substrate. Figure 3b illustrates the distribution of silicon, which constitutes the underlying substrate. A decrease in silicon signal intensity is observed in the areas covered by MoS₂ crystallites, indicating uniform deposition of the material across the substrate surface.

Figure 3c shows the distribution of molybdenum. The high Mo signal intensity is localized in the regions where MoS₂ crystallites have formed, confirming the presence of molybdenum disulfide. The gradient in signal intensity suggests variations in layer thickness, which may be attributed to growth kinetics under conditions of limited precursor availability. The lower right panel displays the distribution of sulfur, which, in contrast to molybdenum, appears more diffuse. This may indicate compositional variations across the sample or the presence of amorphous sulfur species deposited onto the substrate.

The formation of well-ordered crystallites is governed by a combination of factors, including crystallographic growth anisotropy, thermodynamic constraints, and nucleation mechanisms [34]. The hexagonal structure of MoS₂ promotes preferential growth along low-energy crystal planes, resulting in the formation of triangular and hexagonal platelets. Synthesis temperature plays a particularly critical role; under optimal conditions, a balance between nucleation and crystal growth is achieved, enabling the formation of uniform, highly crystalline structures. The gradient elemental distributions observed in the EDS maps further support the kinetic nature of the deposition process and reflect local compositional fluctuations during film formation.

Synthesis Temperature (°C)	Deposition Time (min)	Crystallite Size (μm) and Thickness (nm)	Substrate Position Relative to Mo Source	Comments
620	10	~1–7 μm, ~200–300 nm	Distance between sulfur and MoO ₃ - 25 cm between MoO ₃ and substrate - 5 cm	Uniform circular structures formed on the substrate surface, with sulfur-rich composition
700	10	~4–7 μm, –	Distance between sulfur and MoO ₃ - 30 cm between MoO ₃ and substrate - 5 cm	Needle-like structures with molybdenum enrichment
750	10	~2–5 μm, ~0.7 nm	Distance between sulfur and MoO ₃ - 30 cm, between MoO ₃ and substrate - 1.5 cm	Triangular structures formed with partially developed edges
780	15	~2–6 μm, ~0.7 nm	Distance between sulfur and MoO ₃ - 25 cm, between MoO ₃ and substrate - 1.5 cm	Well-defined triangular crystallites with sharp edges

Table 1 – Morphological characteristics of MoS₂ crystallites under various CVD synthesis conditions

Figure 2 – SEM images of the surface morphology of the MoS₂ sample: (a) 750× magnification; (b) 9500× magnification

Figure 3 – Elemental mapping of the MoS₂ sample obtained by energy-dispersive X-ray spectroscopy (EDS)

_____ 33 _____

The crystal structure was analyzed using Raman spectroscopy. The spectra were taken at normal temperature with a single-colour light beam at 632.8 nm wavelength. The measurements were done using a 100× objective lens, which focused a laser beam of $1\,\mu\text{m}$ diameter. A single crystallite from the MoS_2 sample provided the spectra presented in Figure 4. The optical image of this sample is shown in the upper-left corner of the spectra. The spectra show two sharp peaks at ~384 cm⁻¹ and ~405 cm^{-1,} which are characteristic vibrational modes of MoS_2 known as E_{2g}^{1} and A_{1g} . These vibration modes are located at a distance of Δ $\approx 20.9 \text{ cm}^{-1}$, which shows clear signs of a single layer of MoS₂. The Raman spectra exhibit sharp and intense E_{2g}^{1} and A_{1g} peaks, indicative of high crystallinity and structural order in the monolayer MoS₂ [36]. A well-defined structure with a high specific surface area facilitates efficient charge carrier separation and offers numerous active sites for hydrogen evolution reactions [37]. The SEM images show clear edge structures and a uniform pattern, which shows that this sample has many surface locations that react efficiently. An effective resistive gas sensor works through specific edge locations that preferentially take gas molecules and alter electrical conductivity [38].

Figure 4 – Raman spectrum of the MoS₂ sample

The two-phonon scattering process at 450 cm⁻¹ shows up as a broad peak in the spectrum because this band appears in layered transition metal dichalcogenides [35]. The small peak ratio and narrow lineshapes of E_{2g}^1 and A_{1g} prove the high-quality MoS₂ monolayer formation.

Conclusion

The combined results of SEM imaging and elemental mapping indicate that the synthesized MoS₂ exhibits high crystallinity, well-defined structure, and a characteristic morphology shaped by growth dynamics under CVD conditions. Elemental distribution analysis confirms the uniform incorporation of molybdenum and sulfur within the crystalline domains, along with some compositional variation at grain boundaries. Raman spectroscopy further verifies that the obtained sample corresponds to a monolayer of MoS₂. The interpeak distance of $\Delta \approx 20.9 \text{ cm}^{-1}$ between the E_{2g}^{1} and A_{1g} modes is consistent with high-quality monolayer formation. SEM analysis corroborates the uniform spatial distribution of crystallites and their distinct hexagonal morphology. These findings provide a solid basis for further optimization of MoS₂ synthesis parameters aimed at tailoring morphological characteristics, which is particularly relevant for applications in electronic and optoelectronic devices.

Conflicts of interest. The authors declare no conflict of interest.

CRediT author statement: Ye.Otunchi: Methodology; A. Umirzakov: Formal analysis; E. Dmitriyeva and A. Shongalova: Writing-original draft; A. Kemelbekova: Writing review. All authors have read and agreed to the published version of the manuscript.

Acknowledgements. This work was financially supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan under Grant No. BR21881954.

Cite this article as: Otunchi Ye, Umirzakov A, Dmitriyeva E, Shongalova A, Kemelbekova A. Morphological and Crystallographic Investigation of CVD-Grown MoS₂. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2026; 339(4):30-37. https://doi.org/10.31643/2026/6445.38

CVD әдісімен алынған MoS₂-нің морфологиясын және кристаллдық тор құрылымын зерттеу

¹Отунчи Е., ¹ Умирзаков А., ^{1,2}Дмитриева Е., ¹ Шонғалова А., ^{1,2*}Кемелбекова А.

¹ Физико-техникалық институт , Сәтбаев университеті, Алматы, Казахстан ² Manul Technologies, Астана, Қазақстан

	ТҮЙІНДЕМЕ
	Мақалада бу фазасынан химиялық тұндыру (CVD) әдісімен алынған MoS2 негізіндегі
	перспективалы материалдың құрылымдық сипаттамалары зерттелген. Қажетті құрылымды
	алу үшін синтез процесін оңтайландыру нәтижелері де ұсынылған. СVD әдісімен MoS ₂
	кристалдарын синтездеу үшін оңтайлы параметр күкірттенүдің максималды температурасы
	780 °C, усталу уакыты шамамен 15 минут, кукірт көзі аймағының қыздыру температурасы 250
	°С. кукірт пен молиблен көзлерінің арасынлағы кашыктық 25 см. ал молиблен көзі мен
Макала келді: 14 акпан 2025	төсеніш арасындағы кашықтық 15 см болды. Адынған үлсілердің морфологиясы мен
Сараптамадан өтті: 8 сәуір 2025	элементтік курамы сканерлеуші электронды микроскопия (СЭМ) және энергия-
Қабылданды: <i>9 маусым 2025</i>	лисперсиялык рентген спектроскопиясы (ЭЛС) әлістері арқылы зерттеллі. СЭМ натижелері
	таралган. Кристалдарын өн улуун өлшөмі 6 милонга дейін жетелі. ЭЛС картографиядау
	құрылымдық сапасын көрсетеді. Алынған нәтижелер таңдалған тәсілдің тигмділігін және
	жұмыс нәтижелерінің екі өлшемді материалдар технологиясын дамытудағы маңыздылығын
	<i>түшн сөзөер:</i> молиоден дисульфиді, СVD синтезі, 20 материалдар, Раман спектроскопиясы,
	морфология.
Отучиц Едіа	Авторлар туралы ақпарат: Мазистрант физика-техникалық институты Сэтбаре унирерситеті 050032 Ламаты
	Казакстан. Email: ve otunchi@sci.kz: ORCID ID: https://orcid.ora/0009-0006-4361-8099
	PhD докторант, аға ғылыми кызметкер. Физика-техникалык институты. Сәтбаев
Умирзаков Арман	университеті, 050032, Алматы, Қазақстан. Email: a.umirzakov@sci.kz; ORCID ID:
	https://orcid.org/0000-0002-0941-0271
	Физика-математика ғылымдарының кандидаты, профессор, Физика-техникалық
Дмитриева Елена	институты, Сәтбаев университеті, 050032, Алматы, Қазақстан. Етаіl:
	e.dmitriyeva@sci.kz; ORCID ID: https://orcid.org/0000-0002-1280-2559
Шонгалова Айглан	РПО, Физика-тпехникалық институты, Сәтоаев университеті, U5UU32, Алматы, Казақстан Етаі!: a shanaalova@sci kz: ORCID ID: https://orcid.ora/0000_0002_7252_0007
	пазаценная. Еннан. а.знонуаючаезська, оксы ты. перелуюта.огуу 0000-0002-7332-9007 PhD физика-техникалык институты Сатбаев университеті 050032 Даматы
Кемелбекова Айнагуль	Казақстан; Manul Technologies, Астана, Қазақстан. Email: a.kemelbekova@sci.kz : ORCID ID:
·	https://orcid.org/0000-0003-4813-8490

Морфологическое и кристаллографическое исследование MoS₂ выращенных CVD-методом

¹ Отунчи Е., ¹ Умирзаков А., ^{1,2} Дмитриева Е., ¹Шонғалова А., ^{1,2*} Кемелбекова А.

¹ Физико- технический институт, Satbayev University, Алматы, Казахстан ² Manul technologies, Астана, Казахстан

	АННОТАЦИЯ
	В данной статье представлено исследование структурных характеристик перспективного
F (4.4.) 2025	материала на основе MoS ₂ , полученного методом химического осаждения из паровой фазы
Поступила: 14 февраля 2025	(CVD). Также представлена оптимизация процесса синтеза для получения желаемой
Гецензирование. <i>о ипреля 2025</i> Принята в печать: <i>9 июня 2025</i>	структуры. Оптимальным параметром синтеза методом CVD MoS2 кристаллов было
npullina Blickarb. 5 diolini 2025	выявлено максимальная температура сульфуризации 780 °С с выдержкой около 15 минут,
	температура нагрева зоны источника серы 250 °С, расстояние между источниками серы и
	молибдена 25 см, а также расстояние между источником молибдена и подложки составляло

_____ 35 _____

	1,5 см. Морфология и элементный состав полученных образцов были изучены с помощью
	сканирующей электронной микроскопии (СЭМ) с энергодисперсионным рентгеновским
	спектроскопией (ЭДС). С помощью СЭМ было выявлено, что кристаллы MoS₂ формированы
	треугольной формы и равномерно распределены по поверхности подложки. Максимальные
	размеры кристаллитов достигают 6 мкм. ЭДС-картирование кристаллитов подтвердило
	однородное распределение молибдена и серы в структуре, выявив лишь незначительные
	вариации состава на границах зерен. Качество, количество слоя образца были изучены с
	помощью Рамана спектроскопии. Результаты показали два характерных пика (vibrational
	modes E_{i}^{-1} and A_{i}) upupposed by MoS ₂ . There is a second point of the point of th
	nodes L_{2g} and A_{1g} nanopasmephilix initis ₂ . This is interesting the probability of the matrix a_{20} 0 cm ⁻¹ into movem the probability of the matrix a_{20} 0 cm ⁻¹ into movem the probability of the matrix a_{20} of the matrix $a_{$
	структуры полученных кристаллитов. Полученные результаты подчеркивают эффективность
	выбранного подхода и значимость работы для развития технологии 2D-материалов.
	Ключевые слова: дисульфид молибдена, СVD-синтез, двумерные материалы, Рамановская
	спектроскопия, морфология.
	Информация об авторах:
Отунчи Еділ	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова
Отунчи Еділ	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361-
Отунчи Еділ	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099
Отунчи Еділ Умирзаков Арман	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099 PhD докторант, старший научный сотрудник, Физико-технический институт, Satbayev University, 050022, ул. Ибразимова 11, Алматы, Казахстан, Email: a umirzakov@sci.kz; ORCID
Отунчи Еділ Умирзаков Арман	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099 PhD докторант, старший научный сотрудник, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCID ID: https://orcid.org/0000-0002-0941-0271
Отунчи Еділ Умирзаков Арман Лмитриева Глена	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099 PhD докторант, старший научный сотрудник, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCID ID: https://orcid.org/0000-0002-0941-0271 Кандидат физико-технический институт
Отунчи Еділ Умирзаков Арман Дмитриева Елена	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099 PhD докторант, старший научный сотрудник, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCID ID: https://orcid.org/0000-0002-0941-0271 Кандидат физико-математических наук, профессор, Физико-технический институт, Satbayev University. 050032, ул. Ибрагимова 11. Алматы, Казахстан. Email:
Отунчи Еділ Умирзаков Арман Дмитриева Елена	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099 PhD докторант, старший научный сотрудник, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCID ID: https://orcid.org/0000-0002-0941-0271 Кандидат физико-математических наук, профессор, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: e.dmitriyeva@sci.kz; ORCID ID: https://orcid.org/0000-0002-1280-2559
Отунчи Еділ Умирзаков Арман Дмитриева Елена Шонғалова Айгуль	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099 PhD докторант, старший научный сотрудник, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCID ID: https://orcid.org/0000-0002-0941-0271 Кандидат физико-математических наук, профессор, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: e.dmitriyeva@sci.kz; ORCID ID: https://orcid.org/0000-0002-1280-2559 PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11,
Отунчи Еділ Умирзаков Арман Дмитриева Елена Шонғалова Айгуль	Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099 PhD докторант, старший научный сотрудник, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCID ID: https://orcid.org/0000-0002-0941-0271 Кандидат физико-математических наук, профессор, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: e.dmitriyeva@sci.kz; ORCID ID: https://orcid.org/0000-0002-1280-2559 PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.shongalova@sci.kz; ORCID ID: https://orcid.org/0000-0002-7352-
Отунчи Еділ Умирзаков Арман Дмитриева Елена Шонғалова Айгуль	Информация об авторах:Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361-8099PhD докторант, старший научный сотрудник, Физико-технический институт, SatbayevUniversity, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCIDID: https://orcid.org/0000-0002-0941-0271Кандидат физико-математических наук, профессор, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: e.dmitriyeva@sci.kz; ORCID ID: https://orcid.org/0000-0002-1280-2559PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.shongalova@sci.kz; ORCID ID: https://orcid.org/0000-0002-7352- 9007
Отунчи Еділ Умирзаков Арман Дмитриева Елена Шонғалова Айгуль Кемелбекова Айнагуль	Информация об авторах:Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361-8099PhD докторант, старший научный сотрудник, Физико-технический институт, SatbayevUniversity, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCIDID: https://orcid.org/0000-0002-0941-0271Кандидат физико-математических наук, профессор, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: e.dmitriyeva@sci.kz; ORCID ID: https://orcid.org/0000-0002-1280-2559PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.shongalova@sci.kz; ORCID ID: https://orcid.org/0000-0002-7352- 9007PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.shongalova@sci.kz; ORCID ID: https://orcid.org/0000-0002-7352- 9007PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11,
Отунчи Еділ Умирзаков Арман Дмитриева Елена Шонғалова Айгуль Кемелбекова Айнагуль	 Информация об авторах: Магистрант, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: ye.otunchi@sci.kz; ORCID ID: https://orcid.org/0009-0006-4361- 8099 PhD докторант, старший научный сотрудник, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.umirzakov@sci.kz; ORCID ID: https://orcid.org/0000-0002-0941-0271 Кандидат физико-математических наук, профессор, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: e.dmitriyeva@sci.kz; ORCID ID: https://orcid.org/0000-0002-1280-2559 PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан. Email: a.shongalova@sci.kz; ORCID ID: https://orcid.org/0000-0002-7352- 9007 PhD, Физико-технический институт, Satbayev University, 050032, ул. Ибрагимова 11, Алматы, Казахстан; Manul technologies, Астана, Казахстан. Email: a.kemelbekova@sci.kz;

References

[1] Ye M, Winslow D, Zhang D, Pandey R, Yap Y. Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS₂) thin films. Photonics. 2015; 2(1):288-307. https://doi.org/10.3390/photonics2010288

[2] Tobis M. Controlling structure and morphology of MoS_2 via sulfur precursor for optimized pseudocapacitive lithium intercalation hosts. ChemRxiv. 2024. https://doi.org/10.26434/chemrxiv-2024-7hz4h

[3] Pak S, Lim J, Hong J, Cha S. Enhanced hydrogen evolution reaction in surface functionalized MoS₂ monolayers. Catalysts. 2021; 11(1):70. https://doi.org/10.3390/catal11010070

[4] Zhang G, Liu H, Qu J, & Li J. Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy & Environmental Science. 2016; 9(4):1190-1209. https://doi.org/10.1039/c5ee03761a

[5] Khac B, and Chung K. Quantitative assessment of friction characteristics of single-layer MoS₂ and graphene using atomic force microscopy. Journal of Nanoscience and Nanotechnology. 2016; 16(5):4428-4433. https://doi.org/10.1166/jnn.2016.11004

[6] Kong N, Wei B, Li D, Zhuang Y, Sun G, Wang B. A study on the tribological property of MoS₂/Ti– MoS₂/Si multilayer nanocomposite coating deposited by magnetron sputtering. RSC Advances. 2020; 10(16):9633-9642. https://doi.org/10.1039/d0ra01074j

[7] Ermolaev G, Stebunov Y, Vyshnevyy A, Tatarkin D, Yakubovsky D, Novikov S, Volkov V. Broadband optical properties of monolayer and bulk MoS₂. NPJ 2D Materials and Applications. 2020; 4(1). https://doi.org/10.1038/s41699-020-0155-x

[8] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS₂. Nano Letters. 2011; 11(12):5111-5116. https://doi.org/10.1021/nl201874w

[9] Lin H, Wang C, Wu J, Xu Z, Huang Y, Zhang C. Colloidal synthesis of MoS₂ quantum dots: size-dependent tunable photoluminescence and bioimaging. New Journal of Chemistry. 2015; 39(11):8492-8497. https://doi.org/10.1039/c5nj01698c

[10] Zhao K. Flexible resistive gas sensor based on molybdenum disulfide-modified polypyrrole for trace NO₂ detection. Polymers. 2024; 16(13):1940. https://doi.org/10.3390/polym16131940

[11] Samy O, Zeng S, Birowosuto M, & Moutaouakil A. A review on MoS_2 properties, synthesis, sensing applications and challenges. Crystals. 2021; 11(4):355. https://doi.org/10.3390/cryst11040355

[12] Zou J, Cai Z, Lai Y, Tan J, Zhang R, Feng S, Cheng HM. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano. 2021; 15(4):7340-7347. https://doi.org/10.1021/acsnano.0c09349

[13] Pak S. Controlled p-type doping of MoS_2 monolayer by copper chloride. Nanomaterials. 2022; 12(17):2893. https://doi.org/10.3390/nano12172893

[14] Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y. Co-doped MoS₂ nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Applied Materials & Interfaces. 2015; 7(49):27242-27253. https://doi.org/10.1021/acsami.5b08420

[15] Kosnan MA, Azam MA, Munawar RF, Klimkowicz A, Takasaki A. Structural, Morphological, and Electrochemical Properties of MXene/MoS₂-based Supercapacitor. International Journal of Nanoelectronics and Materials (IJNeaM). 2024; 17:263-273. https://doi.org/10.58915/ijneam.v17iJune.867 [16] Morant-Giner M, Brotons-Alcázar I, Shmelev NY, Gushchin AL, Norman LT, Khlobystov AN, & Coronado E. WS₂/MoS₂ heterostructures through thermal treatment of MoS₂ layers electrostatically functionalized with W₃S₄ molecular clusters. Chemistry – A European Journal. 2020; 26(29):6670-6678. https://doi.org/10.1002/chem.202000248

[17] Poudel Y, Sławińska J, Gopal P, Seetharaman S, Hennighausen Z, Kar S, & Neogi A. Absorption and emission modulation in a MoS₂–GaN (0001) heterostructure by interface phonon–exciton coupling. Photonics Research. 2019; 7(12):1511-1520. https://doi.org/10.1364/PRJ.7.001511

[18] Li Z, Bretscher H, Zhang Y, Delport G, Xiao J, Lee A, Rao A. Mechanistic insight into the chemical treatments of monolayer transition metal disulfides for photoluminescence enhancement. Nature Communications. 2021; 12(1):6044. https://doi.org/10.1038/s41467-021-26378-0

[19] Tanoh AOA, Alexander-Webber J, Xiao J, Delport G, Williams CA, Bretscher H, Rao A. Enhancing photoluminescence and mobilities in WS₂ monolayers with oleic acid ligands. Nano Letters. 2019; 19(9):6299-6307 https://doi.org/10.1021/acs.nanolett.9b02431

[20] Wang W, Liu Y, Zeng X. Large size few-layer ambipolar MoS₂ metal-oxide-semiconductor field effect transistors by nitrogen plasma doping. Key Engineering Materials. 2022; 938:89-94. https://doi.org/10.4028/p-h5sa9v

[21] Shaker R, Mohammed S, Abdulsayed Y. Molybdenum disulfide-zirconium dioxide composite with enhance supercapacitance performance. Journal of Metals Materials and Minerals. 2023; 33(4):1791. https://doi.org/10.55713/jmmm.v33i4.1791

[22] Siwińska-Stefańska K, Kurc B, Rymarowicz D, Kubiak A, Piasecki A, Moszyński D, Jesionowski T. Crystallization of TiO₂–MoS₂ hybrid material under hydrothermal treatment and its electrochemical performance. Materials. 2020; 13(12):2706. https://doi.org/10.3390/ma13122706

[23] Ghasemi F, Mohajerzadeh S. Sequential solvent exchange method for controlled exfoliation of MoS₂ suitable for phototransistor fabrication. ACS Applied Materials & Interfaces. 2016; 8(45):31179-31191. https://doi.org/10.1021/acsami.6b07211

[24] Li S, Zhou S, Wang X, Tang P, Pasta M, & Warner J. Increasing the electrochemical activity of basal plane sites in porous 3D edge-rich MoS₂ thin films for the hydrogen evolution reaction. Materials Today Energy. 2019; 13:134-144. https://doi.org/10.1016/j.mtener.2019.05.002

[25] Pudkon W, Bahruji H, Miedziak P, Davies T, Morgan D, Pattisson S, Hutchings G. Enhanced visible-light-driven photocatalytic H_2 production and Cr(VI) reduction of a $ZnIn_2S_4/MoS_2$ heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science & Technology. 2020; 10(9):2838-2854. https://doi.org/10.1039/d0cy00234h

[26] Zheng W, Wang Q, Li L, Yang R, Zhang G. Monolayer MoS₂ epitaxy. Nano Research. 2020; 14(6):1598-1608. https://doi.org/10.1007/s12274-020-3019-y

[27] Chen S, Gao J, Bharathi M, Zhang Y. A kinetic Monte Carlo study for mono- and bi-layer growth of MoS₂ during chemical vapor deposition. Acta Physico-Chimica Sinica. 2019; 35(10):1119-1127. https://doi.org/10.3866/pku.whxb201812023

[28] Liu L, Liu N, Chen B, Dai C, Wang N. Recent modification strategies of MoS₂ towards electrocatalytic hydrogen evolution. Catalysts. 2024; 14(2):126. https://doi.org/10.3390/catal14020126

[29] Liang J, Wei Z, Wang C, Ma J. Vacancy-induced sodium-ion storage in N-doped carbon nanofiber@MoS₂ nanosheet arrays. Electrochimica Acta. 2018; 285:301-308. https://doi.org/10.1016/j.electacta.2018.07.230

[30] Panjulingam N, Lakshmipathi S. Multiphase MoS₂ monolayer: a promising anode material for Mg-ion batteries. Preprint. 2023. https://doi.org/10.21203/rs.3.rs-3162287/v1

[31] Shinde NB, Francis B, Ramachandra Rao MS, Ryu BD, Chandramohan S, Eswaran SK. Rapid wafer-scale fabrication with layerby-layer thickness control of atomically thin MoS₂ films using gas-phase chemical vapor deposition. APL Materials. 2019; 7(8):081105. https://doi.org/10.1063/1.5100914

[32] Curtis M, Maryon O, McKibben N, Eixenberger J, Chen C, Chinnathambi K, Estrada D. Assessment of wafer scale MoS₂ atomic layers grown by metal–organic chemical vapor deposition using organo-metal, organo-sulfide, and H₂S precursors. RSC Advances. 2024; 14(31):22618-22626. https://doi.org/10.1039/D4RA04279D

[33] Sun J, Li X, Guo W, Zhao M, Fan X, Dong Y, Fu Y. Synthesis methods of two-dimensional MoS₂: A brief review. Crystals. 2017; 7(7):198. https://doi.org/10.3390/cryst7070198

[34] Suleman M, Lee S, Kim M, Nguyen VH, Riaz M, Nasir N, Seo Y. NaCl-assisted temperature-dependent controllable growth of large-area MoS_2 crystals using confined-space CVD. ACS Omega. 2022; 7(34):30074-30086. https://doi.org/10.1021/acsomega.2c03108

[35] Zhang X, Lee YH, Zhang W, Chang MT, Lin CT, Chang KD, Li LJ. Shape evolution of monolayer MoS₂ crystals grown by chemical vapor deposition. Chemistry of Materials. 2014; 26(22):6371-6379. https://doi.org/10.1021/cm5025662

[36] Chakraborty B, Bera A, Muthu DVS, Bhowmick S, Waghmare UV, Sood AK. Symmetry-dependent phonon renormalization in monolayer MoS₂ transistor. The Journal of Physical Chemistry Letters. 2014; 5(17):2924-2930. https://doi.org/10.1021/jz501230n

[37] Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC. Emerging device applications for semiconducting twodimensional transition metal dichalcogenides. Nano Letters. 2014; 14(6):3343-3352. https://doi.org/10.1021/nl501892k

[38] Late DJ, Liu B, Matte HSSR, Dravid VP, Rao CNR. Gas sensing using atomically thin-layered 2D nanomaterials: A review. ACS Applied Materials & Interfaces. 2023; 15(11):13697-13716. https://doi.org/10.1021/acsami.3c04438