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ABSTRACT

The article provides a brief overview of the aluminum industry development in Kazakhstan and the
possibility of obtaining high-strength structural aluminum-lithium alloys. The country's enterprises
produce aluminum of technical purity and aluminum alloys of low and medium strength of 6060, 6063,
6463, 6082, AKSM2, ADS-12, AD-31, AD-35, which are available materials for the construction industry.
In Kazakhstan, there is progressive development of mechanical engineering which requires stronger
alloys of 300-400 MPa, and for special engineering (defense, aerospace, and other advanced industries)
- strengths above 415 MPa. High-strength structural aluminum alloys are based on Al-Cu-Mg, Al-Zn-Mg-
Cu, Al-Li systems. Among these systems, relatively new Al-Li alloys are of great interest, having a great
potential for further improvement of characteristics. The Al-Li system alloys with record-high specific
strengths, corrosion-resistant, and good welded joints are widely used in the aerospace industry, where
they are used for the production of power elements and housings. The article provides an overview of
the known aluminum-lithium alloys, as well as the main technological stages of their production.
Keywords: alloy, aluminum, lithium, magnesium, zirconium, strength, technology.
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Introduction alloys of the Al-Cu-Mg and Al-Zn-Mg-Cu systems do

Currently, the main aluminum alloys produced in
the world are alloys of the Al-Si, Al-Mn, Al-Mg, Al-
Mg-Si, Al-Cu-Mg, Al-Li systems with a specific
strength of 64-223 m?/s%. According to strength
characteristics, aluminum alloys are divided into
three classes: alloys of low, medium, and high

specific strength (Table 1).

not meet the requirements of weight reduction and
good weldability of the structure. These properties
are a priority when creating airplanes and spacecraft.
The alloys of the Al-Cu-Mg and Al-Zn-Mg-Cu systems
are very susceptible to corrosion and require
anodizing of the surfaces.

Among all aluminum alloys, the alloys of the Al-
Li system have not only high strength characteristics
but are also easily amenable to any type of welding,

The high-strength alloys include alloys of the Al- haye high corrosion resistance, which makes them a
Cu-Mg, Al-Zn-Mg-Cu, and Al-Li systems as can be  promising new class among high-strength aluminum
seen from the table. The alloys of these systems have alloys [[1], [2], [3]]. The huge interest in aluminum-
high strength compared to other alloys, however, |ithium alloys is caused by the fact that each
the alloys of the Al-Cu-Mg and Al-Zn-Mg-Cu systems  percentage of lithium included in the alloy reduces
are not amenable to arc welding, and have a high  the density by 3%, increases the modulus of elasticity

density due to the copper and zinc included in the by 6%, increases the resistance of the alloy to crack
composition. The characteristics of high-strength  propagation [4].
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Table 1 - Mechanical properties of aluminum alloys [[1], [2], [3]]

Characteristics of alloys System Grades Specific Arc welding Corrosion
strength, m?/s? resistance
Low strength alloys Al-Si AK12 64 Good Good
AK9 98
AK7 83
Al-Mn AMc 80 Good Good
Medium strength alloys Al-Mg-Si AD31 92 Average Average
AD33 118
AD35 122
Al-Mg AMg5 112 Good Good
AMg6 151
Al-Zn-Mg 1915 134 Average Low
1925 123
High-strength alloys Al-Cu-Mg D1 147 Low Low
D16 160
Al-Zn-Mg-Cu B95 182-200 Low Low
Al-Li 1420 180 Good Good
1460 215
2090 223
8090 171

But the main advantage of Al-Li alloys is that they
are easy to weld, allowing the use of such types as
laser, friction welding with stirring, and argon arc
welding with the use of additive materials [[5], [6]].
The use of these technologies in the creation of
welded structures of aerospace vehicles and other
vehicles made of Al-Li alloys gives a huge weight
advantage compared to riveted structures made of
traditional aluminum alloys, which saves fuel
consumption by reducing the weight of the product
by 15-25% [7].

Aluminum-lithium alloys: history, types, and
applications. Development of aluminum-lithium
alloys began in 1950 and alloys of various purposes
have been created to date: alloys of the Al-Li-Mg
system for welded and riveted structures; high-
strength alloys of the Al-Li-Cu system to replace the
B95 type alloy; high crack resistance alloys of the Al-
Li-Mg-Cu system to replace the alloy type D16; heat-
resistant and high-strength alloys of the Al-Li-Cu-Mp-
Cd system; welded high-strength alloys of the Al-Li-
Cu-Sc system for operation at low temperatures. The
aluminume-lithium alloys are divided into three
generations. Al-Li alloys of the first generation are
mainly researched and developed in USA and USSR
in the period 1950-1960; Al-Li alloys of the second
generation were obtained in the USA, Europe, and
Russia in the period of 1970-1980; Al-Li alloys of the
third generation are studied mainly in the USA. Their
development began in the early 90s and continues to
the present. The chemical composition and
mechanical properties of the known aluminum-
lithium alloys are given in Table 2 [[8], [9], [10], [11]].

The first aluminum-lithium alloy 2020 was
developed in 1957 by Alcoa (USA). Alloy 2020 had
high strength and high creep resistance at 150-200 'C
and was used to manufacture the wings of the Ra-5C
Vigilante BMC aircraft. In 1960, alloy 2020 was
discontinued due to production problems related to
its high brittleness and poor ductility [12].

The first Soviet aluminum-lithium alloy VAD23
with lithium content was developed in 1960. Alloy
VAD23 has a 5% low density and a 5% high modulus
of elasticity compared to alloy D16. VAD23 has high
heat resistance at temperatures up to 225°C due to
the content of manganese and cadmium. However,
the low strength and plastic characteristics of
welded joints, and the tendency to crack did not
make it possible to use the alloyVAD23 in practice
[[12], [13], [14], [15], [16]].

In 1965, on the basis of the Al-Li-Mg system, the
first original, patented, lightest (2.4 g/m?3), weldable,
corrosion-resistant alloy 1420 was developed. Alloy
1420 had high corrosion resistance, good
weldability, high modulus of elasticity, sufficient
strength, and low density. Alloy 1420 is 12% lighter
and the modulus of elasticity is 8% higher compared
to alloy D16. There are no existing analogs of alloy
1420 outside Russia [15].

In 1971, alloy 1420 was used in the riveted
fuselage structure of the Yak-36 aircraft, reducing
the bulk to 24%. Due to the weldability of all types of
welding, alloy 1420 was used in 1980 to create the
world's first welded MiG-29 aircraft (Figure 1). As a
result, welded sealed tanks and the cockpit were
made of alloy 1420 [17].
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Alloys 1421, and 1423 with a high yield strength
(up to 25%) were obtained on the basis of 1420 due
to the addition of scandium. Alloy 1421 is widely
used in the rocket housings of Makeev State Rocket
Center JSC, which made it possible to reduce the
mass by up to 15%. Alloy 1423 containing
magnesium and scandium was developed in 1985-
1986 and was used for the manufacture of sheet
parts of complex shapes [15].

In order to replace alloys of the D16 type based
on the Al-Li-Mg-Cu system, alloys 1430, 1441, and
1440 with low density (by 8%), high modulus of
elasticity (by 10%) and crack resistance have been

Table 2 - Chemical composition of aluminume-lithium alloys

developed. Alloys 1430 and 1441 differ from alloy
1440 in high ductility (1.5-2 times) [[15], [18]].

Based on the Al-Cu-Li system, alloys 1450 and
1451 have been developed, which have high
strength at elevated temperatures and high
corrosion resistance. When replacing the B95 alloy
with alloys 1450 and 1451, the weight of the
structures is reduced by 8-10%; with an increase in
stiffness by 10%. As a result of additional alloying
with zirconium and scandium alloys of the Al-Cu-Li
system, a weldable alloy 1460 was developed for
welded cryogenic fuel tanks for space and aviation
purposes [15].

Alloy Content of elements in the mass.%
grade | [j lcu [mMn |mg [sc |Ag |c  |zZr |1i |2zn | Manufacturer

1st generation. Specific strength 169-180 m?/s?
2020 1.2 4.5 0.5 Alcoa 1958
1420 2.2 to 6.2 0.1 VIAM 1965

0.25

1421 2.2 0.2 6.1 0.35 0.1 VIAM 1965
1423 2.0 0.2 4.4 0.12 0.1 VIAM 1965
1424 1.8 0.25 5.1 0.08 0.1 0.2 VIAM 1965
5091 1.4 4.2 Alcoa 1958

2nd generation. Specific strength 176-223 m?/s?
1440 2.3 1.9 0.08 1.1 0.2 0.1 VIAM 1980e
1430 1.7 1.6 2.7 0.11 VIAM 1980e
1441 2.0 1.9 0.4 1.1 0.16 0.07 VIAM 1980e
1450 2.0 3.2 0.08 0.1 0.2 0.15 VIAM 1980e
1460 2.3 3.3 0.1 0.1 0.12 0.15 VIAM 1980e
1461 1.8 3.5 0.5 0.6 0.8 0.05 0.12 0.05 VIAM 1980e
1464 1.8 3.2 0.4 0.7 0.09 0.11 VIAM 1980e
1469 1.7 4.5 0.5 0.5 0.28 1.5 0.2 VIAM 1980e
2090 2.6 3.0 0.0 0.3 0.05 0.1 0.1 Alcoa 1984
2091 2.3 2.5 0.1 1.9 0.1 0.1 0.1 Pechiney 1985
2094 1.4 5.2 0.2 0.8 0.6 0.12 0.1 EAA, 1984
8090 2.4 1.2 0.8 0.11 EAA, 1984

3rd generation. Specific strength 181-242 m?/s?
2195 1.0 4.0 0.4 0.4 0.11 LM/Reynolds 1992
2196 1.75 2.9 0.3 0.5 0.4 0.11 0.3 LM/Reynolds 2000
2297 1.4 2.8 0.3 0.25 0.11 0.5 LM/Reynolds 1997
2397 1.4 2.8 0.3 0.2 0.11 0.1 Alcoa 1993
B-1469 | 1.2 3.2 0.3 0.1 0.4 0.09 VIAM 2000e
B-1461 | 1.8 2.8 0.5 0.1 0.08 0.6 VIAM 2000e
2098 1.05 3.5 0.35 0.53 0.4 0.11 0.3
2198 1.0 3.2 0.5 0.5 0.4 0.11 0.3 Reynolds/McCook

2005

2099 1.8 2.7 0.3 0.3 0.09 0.7 Alcoa 2003
2199 1.6 2.6 0.3 0.2 0.09 0.6 Alcoa 2005
2050 1.0 3.6 0.3 0.4 0.4 0.11 0.2 Pechiney 2004
2296 1.6 2.4 0.2 0.6 0.4 0.11 0.2 Alcan, 2010
2060 0.7 3.9 0.3 0.8 0.2 0.11 0.4 Alcoa 2011
2055 1.1 3.7 0.3 0.4 0.4 0.11 0.5 Alcoa 2012
2065 1.2 4.2 04 0.5 0.3 0.11 0.2 Constellium 2012
2076 1.5 2.3 0.3 0.5 0.2 0.11 0.3 Constellium 2012
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Based on the developed alloy 1420, Alcoa, Alcan,
Pechiney intensive work on aluminume-lithium alloys
were carried out. As a result of these works, foreign
alloys 2060, 2090, 2091, 8090, Navalite and others
were developed [[19], [20], [21]].

Aluminum-lithium alloys are used in the
manufacture of wings and horizontal stabilizer of the
American military aircraft A-5 "Vigilante", in the
lower wing skin of the Airbus A380, the internal
structure of the Airbus A350 wing, Bombardier
CSeries fuselage (where alloys make up 24% of the
fuselage) [22], in the cargo floor of the Boeing 777X
[23] and in the blades the fan of the Pratt & Whitney
PurePower turbofan aircraft engine [24]. Welded
hulls of the well-known Proton and Angara launch
vehicles (Russia) are made of aluminum-lithium
alloys.

In space technology, tanks for fuel and oxidizer
of the first and second stages of the Falcon 9 launch
vehicle are made of aluminum-lithium alloys using
friction welding with mixing (Figure 2) [25]. The
Falcon 9 is a two-stage liquid-fuel rocket with a
diameter of 3.66 m. The tanks of both stages are
made of sheets and plates of Al-Li 2198.

Figure 1 - MiG-29 FTR

The thrust panels of the Space Shuttle launch
vehicle tank were also made of Al-Li alloys 2090,
2195, which made it possible to reduce the weight
of the product by 3000 kg than when using alloy
2219 (Figure 3) [11].

Figure 2 - Falcon 9 fuel tank made of aluminum-
lithium alloy 2198

The use of Al-Li alloys for future cryogenic tanks
was studied by the European Space Association

(ESA) [[26], [27]]. Al-Li alloys are used in the Centaur
upper stage in the Atlas V rocket (Figure 4) [28] and
the Orion spacecraft (Figure 5) [[29], [30]]. Orion has
a crew module and a maintenance module. Both
modules use aluminum-lithium alloys 2195 for the
main bearing spars and alloy 2050 for other
components, including frames, ribs and window
sections.

Figure 3 - External fuel tanks and thrust panels of
the Space Shuttle tank made of aluminum-lithium alloys
2090 and 2195

Figure 4 - Centaur upper stage in the Atlas V rocket

The key technology for manufacturing Al-Li alloy
components and structures for spacecraft,
especially tanks and tank domes, is friction mixing
welding. Friction welding with mixing was used to
connect the components of the Orion crew module
Al-Li, including the final 11.3 m long weld connecting
the forward cone assembly and the crew tunnel with
the aft assembly [[31], [32]]. Friction welding with
mixing has also been used to manufacture spin
domes of fuel tanks made of Al-Li alloy 2195 [33] and
it is planned to use this technology to connect parts
of the main tank made of alloy 2219 for the Ariane 5
launcher [34].

Figure 5 - Al-Li alloys used in the American Orion
spacecraft
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Aluminum-lithium alloys are also beginning to
be used in shipbuilding and the automotive industry.

Technology for the production of aluminum-
lithium alloys. Aluminum-lithium alloys used in
aerospace, defense technology and other high-tech
industries have high mechanical properties (o in 2
415 MPa) and are subject to international export
control agreements for dual-use goods and
technologies [[35], [36], [37], [38]]. The countries
producing such materials do not publish the
technologies used, and the finished materials are
sold to third countries only under intergovernmental
agreements, similar to arms sales. In open sources,
only the grades of the alloy, its chemical
composition, mechanical properties, and in some
cases possible prices are given. International export
control agreements do not restrict the rights of third
countries to develop and manufacture dual-use
materials.

Despite the fact that there are no direct
descriptions of the production technology of dual-
use aluminume-lithium alloys in the literature, their
main principal stages can be described in a general
way, based on standard operations for the
production of traditional aluminum alloys [39].

The simplest and most commonly used
aluminume-lithium alloy is alloy 1420 (Table 2). Alloy
1420 belongs to the Al-M—Li system. A feature of this
alloy is its very strong oxidizability during melting
and casting, due to the presence of lithium. It is
believed that the introduction of lithium and
refractory zirconium into the melt requires the
development of special technological techniques.
The technological stages of obtaining aluminum-
lithium alloy 1420, most likely consist of the
following stages:

1. Preparation of the charge. At the beginning of
the operation, the components of the charge are
calculated by % weight. Alloying components are
used in the form of pure metal or aluminum ligature
Al-Li, Al-Zr, and Al-Mg. The technology of introducing
alloying components is not described in the
literature, they need to be determined
experimentally [[40], [41], [42]].

2. Melting. The charge is melted in an induction

vacuum furnace in an argon or helium medium at a
temperature of about 660-700°C for 10-120
minutes. It is allowed to increase the temperature to
780 * 15°C for uniform distribution of refractory
zirconium over the melt volume. Heating over 800°C
is not desirable due to the strong oxidizability of
lithium and loss of magnesium. There are no data on

melting pressure. However, it can be assumed that
the residual pre-vacuum pressure will be sufficient
[[43], [44], [45]].

3. Degassing. The melt is kept in a vacuum
chamber at a residual pressure of 266-1333 Pa (2-10
mmHg) and at a temperature of 750-800°C for 5-20
minutes. Using such treatment of the melt with a
chlorine-containing flux, the hydrogen content
decreases to 0.10 cm 3/100 g [45].

4. Casting. The finished melt is poured and
cooled in steel or graphite molds in an argon or
helium medium [45].

5. The chemical composition of the cast sample
should be within the following limits: Mg — 5-6%, Li
—1.9-2.3%, Zr — 0.09-0.15%, Si —0.1-0.3%, res. Al.

6. Homogenization annealing of the sample
varies at the following intervals: 450+ 10 C for 1.5-6
hours. The vacuum in the chamber should not be
lower than 0.1MPa (1 atm) [[46], [47]].

7. Sample tempering varies at the following
intervals: 450°C-490°C for 20 - 120 minutes and
cooled in air or water [[46], [47], [48], [49], [50],
[51]].

8. Sample aging is carried out under the
following conditions [[47], [48], [49], [50]]:

e 120-180°C-5-16 h

e 120°C-12h,+180°C-12h

9. Sample deformation varies at the following
intervals: deformation of 15-30% at a rate of 1s™* for
0.5-1 hour at 20-550°C and a pressure of 6 MPa
[[46], [51], [52]].

10. Sample recrystallization is carried out at
510°C for 30 minutes [51].

11. Determination of sample properties.

The above-proposed stages of 1420 alloy
production can be implemented at Kazakhstan
plants to produce aluminum alloys and products.

Aluminum industry in Kazakhstan. Kazakhstan
has a good raw material base for the production of
aluminum and its alloys. The only alumina producer
in the country is the Pavlodar Aluminum Plant, which
uses alumina as a raw material for the production of
primary metallic aluminum. Pavlodar Aluminum
Plant is part of the association of Aluminum of
Kazakhstan JSC. The plant was put into operation in
1964 and until today its production capacity has
reached 1.5 million tons of alumina per year.

The main consumers of commercial alumina of
Aluminum of Kazakhstan JSC are enterprises of the
Russian Federation, Tajikistan, China and the Kazakh
enterprise Kazakhstan Electrolysis Plant JSC.
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The Kazakhstan Electrolysis Plant was founded
in 2007 in the southeast of Pavlodar and is also the
only producer of primary aluminum in the country.
To date, the Kazakhstan Electrolysis Plant produces
technical purity aluminum (AI>99.0%) and high
purity aluminum (Al>99.95%). The capacity of the
enterprise is 250 thousand tons of aluminum per
year.

According to the Ministry of Industry and
Infrastructure Development of the Republic of
Kazakhstan, the country is working on the
implementation of a project for the construction of
a new electrolysis plant in the city of Pavlodar, which
is scheduled to be launched in 2025. After its launch,
the processing of alumina in Kazakhstan will be
increased to one million tons per year, followed by
the production of primary aluminum up to 500
thousand tons per year. The finished products are
planned to be delivered to the countries of the
European Union and Asia, as well as to the domestic
market of the country.

At the moment, the Kazakhstan Electrolysis
Plant sends about 90% of finished products to
foreign markets and supplies the remaining 10% to
Kazakhstani enterprises such as Aluminum of
Kazakhstan, Giessenhaus, Alprof, Casting, Tsvetlit,
Gold Aluminum. These enterprises, using primary
aluminum, produce the following types of aluminum
alloys and products from them:

1. The German-Russian enterprise Giessenhaus
LLP, which is located in the Pavlodar region,
produces 36-40 thousand tons of alloyed high-
strength aluminum alloy per year. The alloyed
aluminum produced consists of aluminum, silicon,
magnesium, titanium, and manganese (the specific
production technology of the German parent
company LVG GmbH is closed). The finished alloyed
aluminum alloy is sent to Vector-Pavlodar LLP,
where cast car wheels are produced.

2. Aluminum of Kazakhstan LLP (Hoffmann
Aluminum) produces aluminum alloys of 6060, 6063,
6463, 6082 grades (Almaty). The company produces
16,200 tons of aluminum alloys per year. The plant
has a full production cycle: from loading the charge
into the furnace to the production of finished
products of any complexity. The plant's capacities
are not fully loaded.

3. Casting LLP (Almaty) produces casting and
deformable aluminum alloys of AKSM2 and ADS-12
grades. Enterprise capacity Casting LLP makes 12
thousand tons of aluminum alloys per year.

4. Alprof LLP (Almaty) produces various types of
semi-finished products and products made of
aluminum alloys of AD 31, AD 35, 6060, 6063 grades.

5. Gold Aluminum (Shymkent) manufactures
various profiles from structural aluminum alloy
6063. The plant produces 750 tons of aluminum
profiles per year.

6. Tsvetlit LLP (Shymkent) produces aluminum
wire rods and aluminum alloys. The productive
capacity of the enterprise is 24 thousand tons of wire
rods and 12 tons of alloys.

The aluminum alloys produced at these
enterprises have low and medium strength
characteristics and are intended for the production
of aluminum reinforcement for construction. The
products of these plants are intended for internal
use; these alloys are not in demand in other
countries and do not have export potential.

Kazakhstan exports the following types of
aluminum products, namely heat-resistant, a
corrosion-resistant high-strength aluminum alloy of
Giessenhaus LLP; primary aluminum of technical and
high purity of the enterprise of Kazakhstan
Electrolysis Plant JSC, and alumina of Aluminum
Kazakhstan JSC. The products of these enterprises
are in demand not only in the CIS countries, but in
Germany, Austria, and Poland.

Table 3 shows the comparative prices of
alumina, aluminum, and alloys of construction
fittings produced in Kazakhstan, as well as alloy
1420.

Table 3 - Prices of alumina, aluminum and alloys

Material Price, KZT/kg
Alumina 143-156
Aluminum 450-615
Alloys for 626-1000
construction
fittings
Alloy 1420 1827

As can be seen, alloy 1420 is 2-3 times more
expensive than alloys of the type silumin, duralumin,
avial, and others produced in Kazakhstan.
Aluminum-lithium alloys, including alloy 1420, are in
high demand on the international market. The
development of the 1420 alloy production
technology and its implementation at the factories
of Kazakhstan is an urgent and cost-effective task
since this material is of high processing and high
technology.

The composition of alloy 1420 includes
zirconium, magnesium, and lithium. These alloying
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elements are currently freely available on the
international market in the form of pure metal or
ligature. In the future, it would be possible to use
zirconium and lithium of their own production. On
this issue, the situation is as follows:

1.The Obukhov Mining and Processing Plant
(North Kazakhstan region) produces zirconium
concentrate. Expoengineering LLP  processes
titanium-zirconium ore at the Shokash depositin the
Aktobe region.

2. Primary magnesium in ingots is produced by
Ust-Kamenogorsk Titanium and Magnesium Plant
JSC (Ust-Kamenogorsk) At the moment, 100% of
finished products are exported to countries such as
the USA, Russia, China, and others.

3. According to the representative of "NC
KAZAKH INVEST" - Aitkulov B., it is planned to build
mining and processing plants near lithium deposits
in the East Kazakhstan region, Aktobe, Kostanay, and
West Kazakhstan regions. The cost of the project in
the East Kazakhstan region is estimated at USD102
min., and the production capacity will reach 4
thousand tons of lithium carbonate per vyear.
According to geological research, lithium reserves in
Kazakhstan amount to about 80 thousand tons.
Kazakhstan has every opportunity to implement a

full cycle of lithium production in the coming years
and, consequently, alloys with its use.

Conclusions

There is an increasing demand in the world for
high-strength aluminum-based alloys with strength
characteristics = 415 MPa for promising engineering
tasks. The development of technologies for the
production of the high-strength alloy to develop
exports of domestic finished products to other
countries is relevant. This would allow Kazakhstan to
take a worthy place among manufacturers and
suppliers of competitive aluminum-lithium alloys.
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ANIOMUHUA-NUTUIA KOPbITRAnapbl: Typaepi, Kacuetrepi, KONAaHbINYbI KaHe
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AO «HaumMoHaNnbHbIN LLEHTP KOCMUYECKMX UCCAeA0BaHUM U TeXHONOoTUKU», AiMmaTbl, KasaxcTaH

TYWIHAEME

Makanaga KasaKCTaHHbIH, aNtOMUHWUIA ©HEpPKaCIbiHIH, Aamy KaFaalblHa KaHe GepiKTiri )ofapbl

KOHCTPYKUMANDIK ANOMUHUA-TUTUI

KOpbITNanapblH any MYMKIiHAiriHe KpbicKalla wony

KenTipineai. EnimisgiH  KacinopbiHOApbIHAA TEXHUKANbIK Tasa aNlOMUHUA  MEH  KypblabiC

MHAYCTPUACHI YLLIH Ka/inblFa KO/BKETIMAI maTepuangap 60bin TabblnatbiH 6epikTiri TOMEH aHe

Makana kengi: 14 aknaxel 2022
CapantamagaH eTTi: 26 Haypesi3 2022
Kabbinganapl: 25 cayip 2022

optawwa 6onatbiH 6060, 6063, 6463, 6082, AKSM2, AAC-12, AA-31, A-35 mapKanbl antoMUHUI
KopbITNanapblH eHAipesi. KasakcTaHaa mMallMHa KacayAblH, yAemeni Aamybl Kypin xaTblp, on
ywiH 6epikTiri 300-400 MIMa, an apHaibl MalMHa »Kacay (KopFaHbIC, a3pOoFapbILl KaHe Hacka aa

03blK, cananap) ywid 6epikriri 415 MMa - gaH Kofapbl HEFypP/bIM Bepik KopbiTnanap Kaxer

6onaabl. Xorfapbl 6epikTiri 6ap antomuHMin  Kopbitnanapbl Al-Cu-Mg, Al-Zn-Mg-Cu, Al-Li

KyhenepiHe HerisgenreH. Ocbl KyhenepaiH iwiHAe canbicTbipmansl Typae kaHa Al-Li

KOpbITNanapbl YIKEH Kbi3bIfyLWbINbIK TyAblpadbl, 01apAblH CMNAaTTaMasiapbiH O4aH epi XaKcapTyfa

Y/IKeH aneyeTi 6ap. Al-Li »KyleciHiH KopblTnanapbl PeKOPATbLIK KOfapbl OepiKTiri, KopposusFa

Te3iMAiNiri, LOHEKepNeHreH KOCbINbICTapAblH, aKCbl KepceTKiwTepi 6olMblHWa aspofapbiw

CanacblHAA KEHIHEH KONAAHbINAAbI, OHAA 01ap KyaT 3N1eMEHTTEPi MeH KOPNyCTapAblH eHAipiciHae

KonAaHbliagpl. Xymbicta 6enrini  afloOMUHUA-AUTUIA  KOPbITNanapblHbiH, CUMNaTTamanapbiHa,

COHAait-aK 0n1apAabl OHAIPYAIH, HEri3ri TEXHONOTUANBIK Ke3eHAepiHe WOy Kacanaabl.

TyWiH ce3aep: KOPbITNa, aMIOMUHUIA, IMTUIA, MarHUin, LMPKOHWUIA, 6epiKTiK, TEXHONOTUA.
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AHHOTALMUA

B cTaTbe NpuBOAUTCA KPaTKWUIA 0630p NO COCTOSHUIO Pa3BUTUS alOMUHUEBOW NPOMBbILNIEHHOCTH
KasaxctaHa ¥ BO3MOMHOCTU MO/NYYEHUA BbICOKOMPOUHbIX KOHCTPYKUMOHHbBIX antloMWHUEBO-
NTUEBBIX CNABOB. B NpeanpuATMAX CTPaHbl NPOM3BOAAT aIOMUHUIA TEXHUYECKON YUCTOTbI U
aNtoMUHMEBbIe CNIaBbl HU3KOM 1 cpeaHel npoyHocTh 6060, 6063, 6463, 6082, AK5SM2, AAC-12,
AO-31, AQO-35, KoTopble ABAAIOTCA OOWEAOCTYMHbIMM MaTepuanamu Ana CTPoOUTEeIbHOMN
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npoyHocTAMM Bbiwe 415 MIlla. BbICOKONPOYHbIE KOHCTPYKLMOHHbIE a/NlOMUHWEBbIE CMJIaBbl
OCHOBaHbl Ha cuctemax Al-Cu-Mg, Al-Zn-Mg-Cu, Al-Li. Cpegu 3Tux cuctem 60/1blLOIN MHTEpeC
NpeacTaBAAlOT OTHOCUTENbHO HOBble cniasbl Al-Li, umetowme, no-suammomy, 6GonbLIOW
NOTEHUMAN [aNbHEWLLEro YAyylleHUs XapakTepuctuk. Cnnasbl cuctembl Al-Li ¢ pekopgHo
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COeOMHEHUI HAxoOAT LUMPOKOE NPMMEHEHME B a3POKOCMUYECKOW MPOMbILNEHHOCTH, rae
MCNONb3YIOTCA ANS NPOM3BOACTBA CUIOBbLIX 31IEMEHTOB M KopnycoB. B paboTte gaetca o63op
XapaKTepPUCTUK  U3BECTHbIX  a/lOMUHUEBO-IUTUEBBIX  CMNABOB, a TaKXKe  OCHOBHble
TEXHO/IOTMYECKMe 3Tanbl UX NMPOU3BOACTBA.
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