

DOI: 10.31643/2027/6445.22 Mining & Mineral Processing

Innovative Adsorbent Materials for Efficient Silicon Extraction from Industrial Waters: A review

¹ Kylyshkanov M., ²Gerassyova N., ¹ Sharipov R., ¹ Kuanysh A., ¹ Maldybayev G., ^{1*}El-Sayed Negim, ³ Baigenzhenov O., ⁴ Bekbayeva L., ⁵Khaldun M. Al Azzam, ¹ Balgimbayeva U.

¹ Kazakh British Technical University, Almaty, Kazakhstan

²LLC Deep Core Analytics, Almaty, Kazakhstan

³Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev Unversity, Almaty, Kazakhstan

⁴Al-Farabi Kazakh National University, Almaty, Kazakhstan

⁵ The University of Jordan, 11942, Amman, Jordan

^{*} Corresponding author email: elashmawi5@yahoo.com

	ABSTRACT
Received: <i>October 27, 2025</i> Peer-reviewed: <i>November 24, 2025</i> Accepted: <i>November 26, 2025</i>	Silica fouling reduces the effectiveness and durability of membrane-based treatment systems,
	and silicon contamination in industrial water streams poses ongoing operational issues. With an
	emphasis on their processes, drawbacks, and applicability for various silica species, this article
	provides a comparative examination of the main silica removal technologies: ion exchange,
	reverse osmosis (RO), ultrafiltration (UF), electrocoagulation (EC), adsorption, and lime softening.
	Although they need a significant amount of chemical input and pH control, lime softening and
	ion exchange are efficient for dissolved silica. RO requires thorough preparation and offers broad-
	spectrum separation, although it is susceptible to silica scaling. While UF works well with colloidal
	and particulate silica, it is unsuccessful with monomeric forms. EC achieves excellent removal
	rates with less sludge by combining electrochemical destabilisation and crystallisation.
	Adsorption provides variable selectivity, low energy consumption, and compatibility with
	membrane systems, especially when employing tailored materials like activated alumina, iron
	oxide-coated media, and functionalised hybrids. In addition to outlining important techno-
	economic considerations for scaling up silica extraction methods in intricate industrial water
	matrices, the paper highlights new developments in adsorbent design, such as surface
	modification, hierarchical porosity, and regeneration techniques.
	Keywords: silica, industrial, wastewater, treatment, adsorption.
	Information about authors:
Manarbek Kylyshkanov	Doctor of Physico-Mathematical Sciences, Laboratory of Advanced Materials and Technologies,
wianar bek kyrysnikariov	Kazakh British Technical University, St. Tole bi, 59, 050000, Almaty, Republic of Kazakhstan. Email:
	kylyshkanov@mail.ru
Gerassyova Natalya	Doctoral student, LLC Deep Core Analytics, al-Farabi av., 17/1 b5B, 050059, Almaty, Kazakhstan.
	Email: tatoline2001@gmail.com
Rustam Sharipov	PhD, Assistant Professor, Laboratory of Advanced Materials and Technologies, Kazakh British
	Technical University, St. Tole bi, 59, 050000, Almaty, Kazakhstan. Email: r.sharipov@kbtu.kz
Akzhunis Kuanysh	Master student, Department of science and innovation, Kazakh British Technical University, St. Tole
	bi, 59, 050000, Almaty, Kazakhstan. Email: a.kuanysh@kbtu.kz
Galymzhan Maldybayev	PhD, Associate Professor, Laboratory of Advanced Materials and Technologies, Kazakh British
, ,	Technical University, St. Tole bi, 59, 050000, Almaty, Kazakhstan. Email: g.maldybaev@kbtu.kz
El-Sayed Negim	PhD, Professor, School of Materials Science and Green Technologies, Kazakh British Technical
,	University, St. Tole bi, 59, 050000, Almaty, Kazakhstan. Email: elashmawi5@yahoo.com
Omirserik Baigenzhenov	PhD, Professor, Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev
	Unversity 22 Satbaev str.,050013, Almaty, Kazakhstan. Email:
	o.baigenzhenov@satbayev.university
Lyazzat Bekbayeva	PhD, Associate Professor, National Nanotechnology Open Laboratory, Al-Faraby Kazakh National
	University, Al-Farabi av., 050040, Almaty, Kazakhstan. Email: lyazzat_bk2019@mail.ru
Khaldun M. Al Azzam	PhD, Professor, Department of Chemistry, Faculty of Science, The University of Jordan, 11942,
	Amman, Jordan. Email: azzamkha@yahoo.com
Ulpan Balgimbayeva	Doctoral student, School of Applied of Mathematics, Kazakh British Technical University, St. Tole
	bi, 59, 050000, Almaty, Kazakhstan. Email: u.balgimbaeva@kbtu.kz

Introduction

In industrial water systems, silicon is predominantly found as silica (SiO₂), which exists in granular, colloidal, and ionic forms. In industrial

applications, silicon is predominantly present as reactive silica (monomeric and soluble), colloidal silica (non-ionic and suspended), and particulate silica (such as sand or silt). Silica removal is the main goal of extraction procedures to reduce the

possibility of scaling and equipment deterioration. The specific form of silica is determined by variables such as pH, temperature, and the characteristics of the water source. The most effective removal techniques include lime softening, ion exchange, reverse osmosis, and advanced ceramic media filtration [1]. Silicon-containing wastewater is primarily produced during steam throughput or steam drive extraction used for thick oil development. Injected steam causes hydrolysis of underground silicon rocks, forming silicates and resulting in significant amounts of silicon-laden wastewater [[1], [2]]. Large-scale pipeline clogs can arise from silicate scale buildup in oilfield wastewater collection systems. Compared to other water sources, well water includes more silica, which can damage equipment, particularly in deep wells where temperatures are greater. High silica levels also hinder well-water treatment methods, so concentrations must be lowered to protect equipment and membranes. There are many methods used to reoval silicon from industrial wastes. Among these, the most widely employed techniques include adsorption, electroddialysis, reverse osmosis, chemical precipitation, ion exchange, solvent extraction/liquid membrane separation and electrolysis [[3], [4], [5]]. Adsorption has become a critical process across numerous industrial applications, including natural gas storage, pollution control, catalyst support, and particularly in gas separation and purification, owing to its low energy requirements, operational flexibility, and the wide variety of available adsorbents [[6], [7], [8], [9], [10]]. Additionally, adsorption processes are widely recognized as a standard technique for determining the surface area and pore size distribution of solid materials. This process is characterised by its nonenvironmental cost-effectiveness, toxicity, sustainability, and renewability. As a result, it is seen as a practical substitute for conventional treatment procedures and an efficient way to remove heavy metals from wastewater. The process of adsorption can be accomplished via chemisorption, which involves the creation of a chemical connection between the sorbate molecule and the adsorbent surface, or physical adsorption, which is controlled by weak intermolecular interactions. Due to the remaining valence forces from surface molecules, chemical adsorption results in the formation of a monomolecular layer of adsorbate on the surface. On the other hand, physical adsorption results from molecule condensation inside the solid's capillaries [[11],[12]]. Consequently, thorough

understanding of adsorption mechanisms is essential not only for the design and optimization of industrial adsorption processes but also for accurately characterizing the structure of porous solids. Several methods have been documented for the treatment of industrial effluents. Ion exchange involves swapping ions between electrolytes, or between an electrolyte solution and a complex. Its primary purpose is to employ solid materials such as minerals, clays, membranes, and resins to purify, separate, and disinfect ion-containing fluids. This mechanism may facilitate adsorption and takes place at the solid's surface. However, ion exchange is costly in terms of capital and operating expenses [13]. A common technique for recovering materials or purifying solutions is chemical precipitation, which turns dissolved compounds into solid particles. There are several methods for improving precipitation. Sodium chemical decanoate, carbamates, carbonates, sulphides, and polymers are examples of reagents that generate insoluble metal compounds as alternatives to hydroxide precipitation. Large volumes of sludge and silt containing heavy metals are produced flocculation and coagulation, and this method is typically ineffective in eliminating trace pollutants [14]. Desalination, water purification, and chemical are three applications recovery where electrodialysis, a membrane-based separation technique that uses an electric potential to selectively remove ions from solutions, is very beneficial. Electric fields are used in electrodialysis, a non-thermal separation technique, to move ions across ion-exchange membranes. Positively charged ions (cations) can pass through cation-exchange membranes, while negatively charged ions (anions) can pass through anion-exchange membranes. These membranes are systematically arranged in alternating order between two electrodes within a configuration known as an electrodialysis stack [[15], [16], [17]]. Research indicates that the potential of an electrodialysis cell is largely independent of ion type, instead depending on operational conditions and cell configuration. Despite various drawbacks, electrodialysis has significant advantages for treating heavy metalcontaining wastewater, including the ability to efficiently remove unwanted particles from water and produce highly concentrated streams for recovery [18]. But because this technique produces hazardous waste, cooperation with businesses that can recover and recycle metals from the resultant sludge is required. While, reverse osmosis is a

pressure-driven membrane process designed to remove dissolved salts, contaminants, microorganisms from water by passing it through a semi-permeable membrane that permits the passage of water molecules while restricting larger solutes such as salts, organic compounds, and microbes [[19], [20], [21]]. This technology is extensively employed for desalination, water purification, and industrial fluid separation. In reverse osmosis, the natural osmotic flow is counteracted by applying pressure exceeding the osmotic pressure, thereby enabling the selective removal of impurities. But solvent extraction transfers a solute from one liquid phase (typically aqueous) to another immiscible phase (usually organic) based on solubility differences. Because of operational and financial concerns, it is rarely utilised in wastewater treatment, even though it enables the recovery of important species. Because a liquid membrane permits targeted solute movement between two aqueous phases, combining solvent extraction and membrane separation with a membrane can increase selectivity [[18], [19], [20]]. The electrolysis process is a significant electrochemical technique that utilises electrical energy to drive non-spontaneous chemical reactions, commonly for the decomposition of compounds or extraction of elements. It plays an essential role in fields such as metallurgy, water splitting, and electroplating. Electrolysis operates by passing a direct electric current through an electrolyte a medium containing free ions which induces chemical changes at the electrodes and facilitates the extraction of heavy metals [[22], [23], [24], [25]].

Common methods for removal silica from industrial waste. Lime Softening

By introducing lime (calcium hydroxide), which increases the pH and causes magnesium to precipitate as magnesium hydroxide, the lime softening method eliminates silica from water. During water softening, silica may be removed via precipitation with calcium carbonate or by adsorbing onto solids [26] . This precipitate adsorbs dissolved silica, and both are then removed via sedimentation and filtration. The effects of MgO slaking on silica removal and the mechanisms by which MgO removes silica were investigated [26]. At different pH levels (8.0–11.3), doses (100–1000 ppm), and contact periods (15–120 min), experiments were conducted to assess the silica removal efficiency of slaked and nonslaked MgO

under warm lime sodtening operating temperatures (65-85 °C). There are two competing methods for removing silica: adsorption onto process-formed Mg(OH)₂ or precipitation as magnesium silicate complexes. Slaked MgO showed a lower percentage of silica removal under WLS conditions than nonslaked MgO, which was explained by higher silica adsorption on Mg(OH)₂ after slaking. According to research, the amount of magnesium in the water affects how well silica is removed by precipitation processes [27]. Furthermore, silica solubility can be impacted by temperature, pH level, concentration, silica concentration, and pressure [28]. The hot lime process has been shown to effectively remove both water hardness and silica. Additionally, studies indicate that lime softening can reduce silica content even when performed at ambient temperatures. Three chemical treatments lime-soda softening, sodium aluminate addition, and magnesium oxide for reducing silica in water purification systems were examined. Jar-tester experiments measured the effect of varying doses on silica concentrations. Magnesium oxide was the most cost-effective option for treating 30,000 cubic meters of water, possibly saving around US\$1.8 - 2.1 million annually [29].

Ion exchange

By applying an anion exchange resin, which makes it easier for silica ions to be replaced with hydroxide ions and is regenerated using caustic agents like sodium hydroxide, ion exchange efficiently eliminates dissolved ionic silica from wastewater. Although this technique is quite effective at removing reactive silica, it needs to be treated first to transform the silica into its ionic form since ion exchange cannot deal with colloidal or particulate silicon. However, silica solubility is influenced by a range of factors, including temperature, pressure, pH, and ionic strength. For pH values below 9, solubility remains relatively constant; however, at higher pH levels, solubility increases as silicate ions form in addition to the monomer, which is in equilibrium with the solid phase. Salts lower silica solubility by increasing ionic strength [30]. Silica removal from hydrated lime was tested using ion exchange and UV spectrophotometry. By combining 10 mL of 2 M NaOH with 15 mL of 0.1 M HCl, the ideal technique reduced silica to 0.0054%. Sodium hydroxide reduces silica concentration and can limit silica accumulation on tube surfaces during water treatment [31]. The ideal conditions for silicon

from simulated wastewater removal were determined to be pH 6, a reaction time of 20 minutes, a current density of 27 mA/cm², and a temperature of 35 °C, based on single-factor and orthogonal experiments. Under the conditions of pH 8.0, reaction time of 20 minutes, current density of 27.2 mA/cm², and a temperature of 35 °C, the silicon concentration in Hongshan Oilfield wastewater decreased from 76.22 mg/L to 10.75 mg/L, achieving a silicon removal rate of 85.90% with an electrode mass loss of 0.0209 g. Calcium and magnesium ions greatly improve silica removal at pH 8. These findings inform industrial use of electrocoagulation to remove silicon from oilfield wastewater [1]. The removal of silica from water using the electro-Fenton (EF) advanced oxidation process was systematically evaluated. Experimental investigations varied several parameters, including pH, current density, reaction duration, monopolar versus bipolar system configurations, and interelectrode distance. Results demonstrated that up to 95% silica removal was achieved after 40 minutes of operation at near-neutral pH utilizing a bipolar electrode arrangement. The extent of desilication increased proportionally with higher applied current densities. Optimal silica removal consistently occurred at near-neutral pH values [32]. The separate pretreatment of removing silica was explored using several methods. Testing was done on precipitation using Fe(OH)3, Al(OH)3, silica gel, and a strongly basic anion (SBA) exchange resin. While aluminium some remained aluminosilicate colloids were not eliminated, Al(OH)₃ was the most successful, removing nearly all the dissolved silica. With a silica removal rate of up to 94%, the SBA resin also demonstrated good performance [33].

Reverse osmosis for silica removal

A semipermeable membrane is used in the popular water purification process known as reverse osmosis (RO) to eliminate impurities. Nevertheless, silica cannot be successfully removed by RO alone; pretreatment and scale control are required to avoid silica fouling. The many types of silica dissolved, colloidal, and particulate present difficulties for RO membranes. Although some particle silica is eliminated by RO, dissolved reactive silica frequently gets through and may subsequently result in chronic scaling. Pretreatment strategies for silica removal from reverse osmosis (RO) feed water encompass softening and coagulation, seed

precipitation and aggregation, tight ultrafiltration, ion exchange, adsorptive media, electrocoagulation. To mitigate RO membrane fouling under silica-rich conditions, common approaches include antiscalant dosing, optimization, and intermediate concentrate softening [[33], [30]]. Examined were the behaviour of silica scaling and its elimination in RO membrane processes, paying special emphasis to the gallic acid (GA)-based cleaning mechanism. Even at the lowest starting concentrations of silicic acid, silica scale accumulation caused a steady drop in membrane flow over time. Nonetheless, GA was quite successful in cleaning silica-fouled RO membranes; in the first half hour, it removed 81.87% of the silica scale, recovering 89.7% of the initial flow. GA's ability to clean is ascribed to its ability to adsorb onto silica scale particles, creating a surface complex that changes into a 1:3 complex that dissolves in water. Silica deposits on the membrane surface are gradually broken down by this contact.

These results enhance knowledge of the relationships between GA and silica scaling and provide important information for creating effective silica scale cleaning methods [34]. As feed water concentration rises, increasing osmotic pressure limits water recovery in reverse osmosis. However, this restriction has no effect on membrane distillation (MD), a thermally driven membrane desalination method. This study examined pH adjustment to reduce silica scaling in the MD process. When feed water pH was below 5 or above 10, negligible scaling occurred silica concentrations up to 600 mg/L, whereas scaling peaked at neutral pH (6-8). The study also evaluated cleaning techniques; performance was momentarily restored by dissolving some silica scale with NaOH solutions that had a pH higher than 11. Re-exposed to supersaturated silica, however, caused quicker scaling than with fresh membranes because residual silica remained on membrane surfaces [35]. The electromagnetic field (EMF) influenced the performance of the RO system by reducing membrane scaling, altering the characteristics of the formed scales, and lowering the rate at which normalized water permeability declined. EMF treatment demonstrated efficacy in removing preexisting scales and precipitates from water pipelines and storage tanks. It was only partially successful in getting rid of existing scaling on RO membranes, though. According to membrane autopsy, the scales that developed on the membrane surface when exposed to an electromagnetic field (EMF) had a

soft, powdery texture that made it easy to remove them with a simple water rinse. After examining the many ways that EMF impacted the RO membrane, the magnetohydrodynamic effect was shown to be the main one. This study presents EMF as a chemical-free method for controlling membrane scaling and maintaining RO performance during brackish groundwater desalination, providing detailed discussion on mechanisms and future perspectives [36].

Ultrafiltration (UF)

Ultrafiltration (UF) is a membrane-based separation technology extensively utilised in industrial water treatment processes, particularly for silica removal. This technique uses semipermeable membranes that function at low to moderate pressures (1-10 bar) and have pore diameters that are normally between 0.01 and 0.1 microns. UF may be used to remove particulate and colloidal silica, but it cannot extract dissolved (reactive) silica because it efficiently separates suspended solids, colloidal particles, and highmolecular-weight solutes from water. Several factors influence the efficacy of ultrafiltration, including pH which affects silica speciation and membrane charge; temperature which impacts viscosity and flux; transmembrane pressure where higher levels increase flux but may also promote fouling; and crossflow velocity which plays a crucial role in reducing concentration polarization and fouling [[37], [38]]. Feed solution pH significantly affects electrodialysis with ultrafiltration (EDUF) using polyethersulfone (PES) membranes by altering membrane selectivity through electrostatic interactions with peptides. These effects can cause high molecular weight peptides to accumulate softly. EDUF at pH 9 efficiently isolates cationic peptides (<400 Da) in KCl and restricts anionic peptide variety in KCl 1. A two-step UF-EDUF method using UF permeate as feed is being tested to better understand the influence of high molecular weight peptides [39]. The role of solution chemistry in PES ultrafiltration membrane fouling by silica nanoparticles and natural organic matter was assessed under controlled pH, ionic strength, and calcium conditions. The Lifshitz-van der Waals, electrostatic, and acid-base interactions were measured using the Extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) theory. The main force behind adhesion and cohesion was found to be acid-base attraction, and fouling rose with decreasing pH, increasing ionic strength, and increasing calcium. In complicated colloidal systems,

inverse relationship between estimated the interaction energy and fouling potential highlights the usefulness of xDLVO theory in forecasting membrane behaviour [[40], [41]]. To investigate how adding and then removing silica (SiO₂) nanoparticles affected the membrane's shape, hydrophilicity, and separation performance, an ultrafiltration membrane based on polysulfone (PSf) was designed. Three types of membranes were prepared pristine PSf, PSf/SiO₂ composite, and acidwashed PSf/WSiO₂ and characterized systematically. Pure water flux tests showed that the PSf/WSiO₂ membrane had higher permeability compared to the other samples, while the PSf/SiO2 membrane had lower fouling during bovine serum albumin filtration. These findings indicate that introducing and subsequently removing sacrificial fillers can influence transport properties and performance in PSf-based ultrafiltration membranes [42]. Silica was eliminated using a semi-batch adsorption method that included hollow fibre ultrafiltration membranes and iron oxy/hydroxide agglomerates (IOAs). Adsorbent dose, residence period, and silica content were the main factors investigated. Maximum adsorption occurred within 15 minutes, matching batch results. Higher silica concentrations increased, while greater adsorbent dosages decreased, adsorption capacity. The ultrafiltration membrane separated loaded adsorbent without significant fouling before breakthrough. A simple model accurately predicted breakthrough curves [43].

Electrocoagulation for Silica Removal

Electrocoagulation (EC) uses a direct electric current to dissolve metal electrodes usually aluminum or iron which release ions that bind with and remove silica from water. This chemical-free procedure minimises sludge and eliminates the need for additional chemicals by forming solid floc that is easy to remove, making it an effective substitute for conventional industrial and geothermal water techniques [[44], treatment [45]]. electrochemical reaction serves as the foundation for the electrocoagulation (EC) process. The anode, such as aluminium, oxidises and dissolves when a direct current is supplied, releasing metal ions into the water. Water reduction results in the production of hydroxide ions at the cathode, which causes hydroxide creation. The metal ions released from the anode subsequently react with these hydroxide ions to form metal hydroxides, such as aluminum hydroxide. These metal hydroxides function as coagulants, aggregating with dissolved silica to produce stable hydroxy-aluminosilicate polymers and other flocs. Because of their size, these flocs can be eliminated by filtering or sedimentation procedures [[44], [45], [46]]. The following elements affect the EC process: iron is good for both silica and sulphide, whilst aluminium is good for silica; Results are influenced by electrical factors, including voltage, time, and current density; Flow rate reducing power consumption and increasing efficiency by optimising flow rate and electrode spacing; and Conductivity and pH in water chemistry affect treatment efficacy and cost. [47], [44], [48], and [49]. Electrocoagulation is an effective and energy-efficient approach for removing silica and hardness from oil-sands produced water. Key operating parameters including charge loading, current density, flow rate, and polarity reversal period significantly influence removal efficiency and system performance. Over 80% silica removal was made possible under ideal circumstances (8 mA cm⁻² current density and 1000–1500 C L⁻¹ charge loading), with aluminium electrodes surpassing iron in terms of pollutant reduction and operating costs. Extended polarity reversal intervals further enhanced removal efficiency while reducing energy consumption and cell voltage. These findings highlight the potential of EC, particularly Al-based systems, as a scalable and cost-effective solution for silica-rich industrial wastewater treatment [48]. Meanwhile, the aluminium electrode is frequently used in electrocoagulation (EC) to remediate wastewater that contains SiO₂. The effectiveness of SiO2 removal using iron was increased by methodically optimising the current density, plate plate-to-water ratio, and electrode passivation control. A multiphysical field linked simulation model was also used to examine the temperature field, velocity, concentration, and electricity distributions inside the silica removal system. An optimal silica removal rate of 97.4% was achieved with a theoretical iron consumption of 0.251 g Fe/L, an adsorption capacity of 660 mg SiO2/(g Fe L), and electricity usage of 0.312 Wh/L. Simulation results demonstrated that EC promotes mass and heat transfer within the cell, and anodes featuring square holes are more effective in enhancing the iron corrosion rate [49]. Fouling and scaling from silica are major challenges in membrane desalination. Studies of pretreatment and SDI tests found silicate salts stay insoluble in brackish and seawater, and fouling does not relate to silica levels between 15–200 mg/L. Electrocoagulation using Al³⁺ is more effective than Fe³⁺, reaching 90.2% silica removal efficiency for brackish water containing roughly 28 mg/L silica [50]. The use of hybrid

coagulants composed of polyaluminum nitrate sulfate (PANS) and three polyamines (PAs) with different molecular weights for silica removal was investigated. For each polymer, four hybrids with varying PANS-to-polyamine ratios (5-20%) were examined at five doses (500-2,500 mg/L) and two beginning pHs (8.4 and 10.5). In terms of silica removal, all hybrids performed better than PANS at pH 8.4; they needed lower doses (500 vs. 2,500 mg/L) and were best at 5% polyamine (over 50% vs. PANS's 30%). At pH 10.5, all products removed up to 90% of the material with no variation in efficiency. Generally speaking, hybrids eliminated more COD than PANS, particularly at higher pH values. While PA molecular weight did not affect silica removal, higher weights improved COD removal. Mechanism analysis indicated that PANS promoted sweep flocculation, whereas hybrids combined sweep flocculation with patch formation [51]. The influence water quality affects dissolved silica removal using electrocoagulation with aluminum electrodes was studied. Experiments were performed replacement water (RW) and cooling tower blowdown water (CTBW), both assessed at a small pilot scale with a continuous flow system including electrocoagulation, flocculation, sedimentation, and sand filtration. Key variables evaluated included silica removal efficiency, aluminum usage, head loss, and voltage. Treatment costs for all water types were considered. The Al3+/silica removal ratio ranged from 1.09 to 1.33 for RW and was 0.85 for CTBW [52].

Adsorption for removal silica

An effective method for removing silica from water is adsorption, which makes use of substances like silica-based adsorbents, activated alumina, and iron-based compounds. Activated alumina's remarkable selectivity and regeneration capabilities make it particularly beneficial. Additionally, composite materials, including magnetic ironaluminum hydroxide nanoparticles, provide the benefit of magnetic separation, facilitating straightforward recovery processes [[53], [54], [55], [56]]. Absorbent materials include activated alumina, which is a commonly used and wellresearched adsorbent, particularly for complex industrial wastewaters, due to its selectivity for silica and capacity for regeneration. Although they are also used, iron-based absorbents such iron (III) hydroxide and similar substances have the potential to create deposits that make regeneration procedures more difficult. To improve stability and

adsorption performance, a variety of silica-based materials are used, such as mesoporous silica and silica aerogels, occasionally with additional metal oxides. To make separation and reuse easier, composite materials like magnetic iron-aluminum hydroxide nanoparticles combine silica adsorption capabilities with magnetic qualities [[57], [58], [59], [60], [61]]. Surface contacts, pH, and the chemical affinity of silica species for the adsorbent are all that affect adsorption. Strong dependence characterises the adsorption process; for example, adsorption onto activated alumina is pH-dependent, whereas iron-based adsorbents work best at pH 9. As shown with gallic acidmodified resins, chemisorption—the formation of chemical bonds between silica and the adsorbent occurs sometimes [[53], [57], [62], [63]]. Adsorption and chemical precipitation were used to study the removal of reactive silica from synthetic solutions and industrial anodising waste streams. Seven precipitants and twelve commercial adsorbents were evaluated. Ferrolox (based on iron (III) hydroxide) was the most effective adsorbent, particularly at pH 9, producing 16.22 mg/g for synthetic solutions and 11.25 mg/g for wastewater. According to molecular modelling, Ferrolox and silica species formed a hydroxo-complex during the silica removal process. Magnesium chloride was removed up to 87% in precipitation, and the most important factor was found to be pH (variance value 81.42) [57]. The effectiveness of boehmite (y-AlOOH) as an adsorbent for silica removal was assessed. Both chemical and physical adsorption processes were shown by kinetic analysis, and the pseudo-second-order model suggested the existence of chemisorption. At concentrations more than 50 mg/L, the silica adsorption isotherm complied with the Freundlich model, mesoporous structures facilitated silica adsorption in tap water. According to this study, y-AlOOH can be used as an adsorbent to alleviate silica-related issues in a variety of sectors [56]. At a SiO₂ concentration of 200 mg/L, with a dosage of 0.10 g/L, pH 10.5, and temperature of 303 K, integrated chemical precipitation using Fennofix type FF40 and evaporation achieved 96% silicon removal. This result is marginally higher than reported silicon removal rates for precipitation using CaO (93%) and electro-coagulation (95%)at initial SiO₂ concentrations of 954 mg/L and 250 mg/L, respectively. Both chemical precipitation and

evaporation were able to treat thermo-mechanical pulping (TMP) whitewater of varying strengths, as the treated effluents complied with the regulatory silicon limit of less than 50 mg/L [63]. Magnesium oxide effectively removes soluble silica from water via adsorption, especially when combined with hotprocess lime-soda softening, without increasing lime or soda ash usage. The process aligns with Langmuir and Freundlich isotherms and reduces the solids content of treated water, unlike chemical reagents such as ferric sulphate. While final traces of silica are hardest to eliminate, practical applications have shown reductions from 6.3 ppm to 0.6 ppm and from 56 ppm to 1 ppm in full-scale and natural water treatments, respectively [64]. Core-shell composite Al(OH)₃@Fe₃O₄ nanoparticles magnetic created as adsorbents to extract silica from brackish water. Silica adsorption is made possible by the Al(OH)₃ shell, while magnetic separation is made simple by the Fe₃O₄ core.

At 2 g L-1, these nanomaterials removed approximately 95% and 80% of silica from solutions with initial concentrations of 0.5 and 2 mM, respectively. After four cycles, regeneration with 0.05 M NaOH retained reusability and removal effectiveness of around 40%. The presence of silica polymerisation on the Al(OH)₃ shell during verified adsorption was by spectroscopic investigations. Utilising these nanoparticles in reverse osmosis showed decreased silica scaling and enhanced water recovery, suggesting that they might be used for effective brackish water treatment and inland desalination [[65], [66]]. Ferric hydroxide (Fe(OH)₃) and ferric chloride (FeCl₃) were investigated for the removal of silica from integrated circuit (IC) effluent. Fe(OH)₃ absorbed 94.6% of reactive silica in less than 60 minutes, whereas optimised FeCl₃ decreased turbidity by 97.2%. Adsorption was modelled using PHREEQC and suited the Langmuir isotherm, showing polymerisation on iron surfaces. Silica may be effectively removed from industrial effluent by using both FeCl₃ and Fe(OH)₃ [67].

Conclusions

Removing silica from industrial water is vital for preventing membrane fouling and maintaining efficiency. In addition to their advantages, traditional techniques including electrocoagulation, ion exchange, reverse osmosis, ultrafiltration, and

lime softening have disadvantaged such high chemical usage, high energy costs, and restricted compatibility. The selective removal of reactive and colloidal silica using adsorption, particularly with improved materials, requires less energy and produces less sludge. Research on enhanced adsorbents via regeneration, porous architectures, and surface modification is essential to creating scalable and cost-effective solutions. The development of efficient and sustainable water treatment systems for silicon management can be facilitated by incorporating these developments.

Conflicts of interest. Authors declare no conflict of interest.

CRediT author statement: M. Kylyshkanov: Conceptualization, Methodology, Software; R. Sharipov: Data curation, Writing draft preparation; G. Maldybayev: Visualization, Investigation; A. Kuanysh: Supervision; E. Negim: Software, Validation; N. Gerassyova, L.. Bekbayeva, O. Baigenzhenov, U. Balgimbaeva: Reviewing and Editing.

Acknowledgements. This research was funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. BR28713471 Development of methods for increasing the extraction of uranium from uranium-containing solutions by effectively reducing the content of silicon compounds).

Cite this article as: Kylyshkanov M, Gerassyova N, Sharipov R, Kuanysh A, Maldybayev G, El-Sayed Negim, Baigenzhenov O, Bekbayeva L, Khaldun M Al Azzam, Balgimbayeva U. Innovative Adsorbent Materials for Efficient Silicon Extraction from Industrial Waters: A review. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources. 2027; 341(2):105-116. https://doi.org/10.31643/2027/6445.22

Өнеркәсіптік ағынды сулардан кремнийді тиімді бөліп алу үшін инновациялық адсорбент материалдары: Шолу

¹ Қылышканов М., ²Герасёва Н., ¹ Шарипов Р., ¹ Қуаныш А., ¹ Малдыбаев Г., ¹El-Sayed Negim, ³ Байгенженов Ө., ⁴Бекбаева Л., ⁵ Khaldun M. Al Azzam, ¹ Балгимбаева У.

¹Қазақстан-Британ Техникалық Университеті, Алматы, Қазақстан ²ЖШС Deep Core Analytics, Алматы, Қазақстан ³О. А. Байқоңыров атындағы Тау-Кен Металлургия Институты, Сәтбаев Университеті, Алматы, Қазақстан ⁴Әл-Фараби атындағы Қазақ Ұлттық Университеті, Алматы, Қазақстан ⁵Иордания университеті, 11942, Амман, Иордания

Мақала келді: 27 қазан 2025 Сараптамадан өтті: 24 қараша 2025 Қабылданды: 26 қараша 2025

ТҮЙІНДЕМЕ

Кремнеземмен ластану мембраналық тазарту жүйелерінің тиімділігі мен ұзақ мерзімді беріктігін төмендетеді, ал өнеркәсіптік су ағындарында кремнийдің болуы тұрақты пайдалану кезінде елеулі қиындықтар тудырады. Бұл мақалада кремнийді кетірудің - ион алмасу, кері осмос (КО), ультрафильтрация (УФ), электрокоагуляция (ЭК), адсорбция және әкпен жұмсарту сияқты негізгі технологияларына олардың жұмыс істеу процестері, кемшіліктері мен әртүрлі кремнезем түрлеріне қолданылу ерекшеліктері тұрғысынан салыстырмалы талдау жүргізіледі. Олар айтарлықтай мөлшерде химиялық заттарды және рН бақылауын қажет етсе де, әкпен жұмсарту және ион алмасу әдістері еріген кремнеземді кетіруде тиімді. Кері осмос кең ауқымды бөлу қабілетіне ие болғанымен, алдын ала дайындықты қажет етеді және кремнезем тұнбасының түзілуіне бейім. Ультрафильтрация коллоидты және дисперсті кремнеземді тиімді жояды, дегенмен, ол мономерлі түрлерге қатысты тиімсіз. Электрокоагуляция электрохимиялық тұрақсыздандыру мен кристалдану процестерінің үйлесуі нәтижесінде аз көлемді шлам түзе отырып, жоғары жою тиімділігін қамтамасыз етеді. Адсорбция әдісі әсіресе белсендірілген глиноземді, темір оксиді негізіндегі қаптамаларды және функционалдандырылған гибридтер сияқты арнайы материалдарды пайдаланған жағдайда айнымалы селективтілікке, төмен энергия тұтынуға және мембраналық жүйелермен жақсы үйлесімділікке ие. Сонымен қатар, күрделі өнеркәсіптік су матрицаларынан кремнеземді кетіру әдістерін кеңейтудің негізгі техникалық және экономикалық аспектілерін талдаумен қатар, мақалада адсорбентті жобалаудағы соңғы жетістіктер, мысалы, беттік модификация, иерархиялық кеуектілік және регенерация әдістері талқыланады.

Түйін сөздер: кремний диоксиді, өнеркәсіптік, ағынды сулар, тазарту, адсорбция.

	Авторлар туралы ақпарат:
Манарбек Қылышқанов	Физмат. ғ. докторы, Перспективті материалдар мен технологиялар, Қазақстан-
	Британ Техникалық Университеті, Төле би көшесі, 59, 050000, Алматы, Қазақстан. Етаіl: kylyshkanov@mail.ru
Наталья Герасёва	Докторант, ЖШС Deep Core Analytics, Аль-Фараби даңғылы, 17/1 к5Б, 050059, Алматы, Қазақстан. Email: tatoline2001@gmail.com
Рустам Шарипов	PhD, ассистент-профессор, Перспективті материалдар мен технологиялар, Қазақстан- Британ Техникалық Университеті, Төле би көшесі, 59, 050000, Алматы, Қазақстан. Email: r.sharipov@kbtu.kz
Ақжүніс Қуаныш	Магистрант, Ғылым және инновация департаменті, Қазақстан-Британ Техникалық Университеті, Төле би көшесі, 59, 050000, Алматы, Қазақстан. Email: a.kuanysh@kbtu.kz
Ғалымжан Малдыбаев	PhD, қауымдастырылған-профессор, Перспективті материалдар мен технологиялар, Қазақстан-Британ Техникалық Университеті, Төле би көшесі, 59, 050000, Алматы, Қазақстан. Email: g.maldybaev@kbtu.kz
El-Sayed Negim	PhD, Материалтану және жасыл технологиялар мектебінің профессоры, Қазақстан- Британ Техникалық Университеті, Төле би көшесі, 59, 050000, Алматы, Қазақстан. Email: elashmawi5@yahoo.com
Өмірсерік Байгенженов	PhD, Профессор, О.А. Байқоңыров атындағы Тау-Кен Металлургия Институты, Сәтбаев Университеті, Сәтбаев көшесі, 22., 050013, Алматы, Қазақстан. Email:o.baigenzhenov@satbayev
Ләззат Бекбаева	PhD, Қауымдастырылған-профессор, Ашық Түрдегі Нанотехнологиялық Зертхана, Әл- Фараби атындағы ҚазҰУ 71, әл-Фараби даңғылы, 050040, Алматы, Қазақстан. Email: lyazzat_bk2019@mail.ru
Khaldun M. Al Azzam	PhD, Профессор, Иордания университетінің химия кафедрасы, ғылым факультеті, 11942, Амман, Иордания. Email: azzamkha@yahoo.com
Улпан Балгимбаева	Докторант, Қолданбалы Математика мектебі, Қазақстан-Британ Техникалық Университеті, Төле би көшесі, 59, 050000, Алматы, Қазақстан. Email: u.balqimbaeva@kbtu.kz

Инновационные адсорбирующие материалы для эффективного извлечения кремния из промышленных вод: Обзор

¹ Кылышканов М., ²Герасёва Н., ¹ Шарипов Р., ¹ Куаныш А., ¹ Малдыбаев Г., ¹El-Sayed Negim, ³ Байгенженов О., ⁴Бекбаева Л., ⁵ Khaldun M. Al Azzam, ¹ Балгимбаева У.

¹ Казахстанско-Британский технический университет, Алматы, Казахстан
²TOO Deep Core Analytics, Алматы, Казахстан
³Горно-металлургический институт им. О. А. Байконурова, Сатпаев университет, Алматы, Казахстан
⁴Казахский национальный университет им. Аль-Фараби, Алматы, Казахстан
⁵ Иорданский университет, 11942, Амман, Иордания

АННОТАЦИЯЗагрязнение кремнеземом снижает эффективность и долговечность мембранных систем

эксплуатационные проблемы. В данной статье проводится сравнительный анализ основных технологий удаления кремнезема - ионного обмена, обратного осмоса (ОО), ультрафильтрации (УФ), электрокоагуляции (ЭК), адсорбции и умягчения известью - с акцентом на их механизмы, недостатки и применимость к различным формам кремнезема. Несмотря на необходимость использования значительного количества химических реагентов и контроля рН, известковое умягчение и ионный обмен эффективны для удаления растворённого кремнезема. ОО требует тщательной предварительной подготовки, но обеспечивает широкий диапазон разделения, хотя и подвержен образованию осадков кремнезема. УФ эффективно удаляет коллоидный и частично дисперсный кремнезем, однако не справляется с мономерными формами. ЭК демонстрирует высокие показатели удаления при меньшем объёме осадка благодаря сочетанию электрохимической дестабилизации и кристаллизации. Адсорбция характеризуется переменной селективностью, низким энергопотреблением и совместимостью с мембранными системами, особенно при использовании специально разработанных материалов активированного оксида алюминия, покрытий на основе оксида железа и функционализированных гибридов. Помимо анализа ключевых технико-экономических аспектов масштабирования методов удаления кремнезема из сложных промышленных водных матриц, в статье также рассматриваются последние достижения в области проектирования адсорбентов, такие как модификация поверхности, иерархическая пористость и методы регенерации.

очистки, а присутствие кремния в промышленных водных потоках создаёт постоянные

Ключевые слова: диоксид кремния, промышленные, сточные воды, очистка, адсорбция.

	Информация об авторах:
Манарбек Кылышканов	Д.физмат.наук, Перспективные материалы и технологии, Казахстанско-Британский
	технический университет, ул. Толе би, 59, 050000, Алматы, Казахстан. Email:
	kylyshkanov@mail.ru
Наталья Герасёва	Докторант, ТОО Deep Core Analytics, проспект Аль-Фараби, 17/1 к5Б, 050059, Алматы,
	Казахстан. Email: tatoline2001@gmail.com
Рустам Шарипов	PhD, Ассистент-профессор, руководитель Лаборатории перспективных материалов и
	технологий, Казахстанско-Британский технический университет, ул. Толе би, 59, 050000,
	Алматы, Казахстан. Email: r.sharipov@kbtu.kz
Акжунус Куаныш	Магистрант, Департамент науки и инноваций, Казахстанско-Британский технический
	университет, ул. Толе би, 59, 050000, Алматы, Казахстан. Email: a.kuanysh@kbtu.kz
Галымжан Малдыбаев El-Sayed Negim Омирсерик Байгенженов	PhD, Ассоциированный-профессор, Перспективные материалы и технологии,
	Казахстанско-Британский технический университет, ул. Толе би, 59, 050000, Алматы,
	Казахстан. Email: g.maldybaev@kbtu.kz
	PhD, Профессор Школы материаловедения и зеленых технологий, Казахстанско-
	Британский технический университет, ул. Толе би, 59, 050000, Алматы, Казахстан. Email: elashmawi5@yahoo.com
	PhD, Профессор, Горно-металлургический институт им.О.А.Байконурова, Сатбаев
	Университет, ул. Сатпаева, 22, 050013, Алматы, Казахстан. Етаіl:
	o.baiqenzhenov@satbayev
Ляззат Бекбаева	PhD, Ассоциированный-профессор, Лаборатория нанотехнологии открытого типа, КазНУ
	им. Аль-Фараби 71, проспект Аль-Фараби, 050040, Алматы, Казахстан. Етаіl:
	lyazzat bk2019@mail.ru
Khaldun M. Al Azzam	PhD, Профессор, Кафедра химии, Факультет естественных наук, Иорданский
	университет, 11942, Амман, Иордания. Email: azzamkha@yahoo.com
Улпан Балгимбаева	Докторант, Школа прикладной математики, Казахстанско-Британский технический
	университет, ул. Толе би, 59, 050000, Алматы, Казахстан. Email: u.balgimbaeva@kbtu.kz

References

- [1] Teng W, Liu S, Zhang X, Zhang F, Yang X, Xu M, Hou J. Reliability Treatment of Silicon in Oilfield Wastewater by Electrocoagulation. Water. 2023; 15:206. https://doi.org/10.3390/w15010206
- [2] Wang XJ, Goual L, Colberg PJS. Characterization and treatment of dissolved organic matter from oilfield produced waters. J. Hazard. Mater. 2012; 217:164–170.
- [3] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011; 92:407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
- [4] Hubicki Z, Kolodynska D. Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods. Ion Exch. Technol. 2012, 193-240. https://doi.org/10.5772/51040
- [5] Ghosh P, Samanta AN, Ray S. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination. 2011; 2661(3):213-217. https://doi.org/10.1016/j.desal.2010.08.029
- [6] Liu Q, Li Y, Chen H, et al. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater. 2020, 382. https://doi.org/10.1016/j.jhazmat.2019.121040
- [7] Asere TG, Stevens CV, Du Laing G. Use of (modified) natural adsorbents for arsenic remediation: a review. Sci. Total Environ. 2019; 676:706-720. https://doi.org/10.1016/j.scitotenv.2019.04.237
- [8] Xu H, Zhu S, Xia M, et al. Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@ PANI@ LDH composite: experimental and adsorption mechanism study. J. Hazard. Mater. 2021, 402. https://doi.org/10.1016/j.jhazmat.2020.123815
- [9] Xu H, Zhu S, Xia M, et al. Three-dimension hierarchical composite via in-situ growth of Zn/Al layered double hydroxide plates onto polyaniline-wrapped carbon sphere for efficient naproxen removal. J. Hazard. Mater. 2022, 423. https://doi.org/10.1016/j.jhazmat.2021.127192
- [10] Xu Y, Zhang Q, Jiang G, et al. Activated Carbon Loaded with Ti^{3+} Self-Doped TiO_2 Composite Material Prepared by Microwave Method. J. of Materi Eng and Perform. 2022; 31:2810–2822. https://doi.org/10.1007/s11665-021-06421-9
- [11] Khan ZH, Gao M, Qiu W, et al. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere. 2020; 246. https://doi.org/10.1016/j.chemosphere.2019.125701
- [12] Khan A, Naeem A, Mahmood T, et al. Mechanistic study on methyl orange and congo red adsorption onto polyvinyl pyrrolidone modified magnesium oxide. Int. J. Environ. Sci. Technol. 2022; 19(4):2515-2528. https://doi.org/10.1007/s13762-021-03308-z
- [13] Barakat M A. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry. 2011; 4(4):361-377
- [14] Guillaume Hopsort, Quentin Cacciuttolo, David Pasquier. Electrodialysis as a key operating unit in chemical processes: From lab to pilot scale of latest breakthroughs. Chemical Engineering Journal. 2024; 494:153111.
- [15] Gmar S, Chagnes A, Lutin F, Muhr L. Application of Electrodialysis for the Selective Lithium Extraction Towards Cobalt, Nickel and Manganese from Leach Solutions Containing High Divalent Cations/li Ratio, Recycling. 2022; 7:14. https://doi.org/10.3390/recycling7020014
- [16] Zimmermann P, Tekinalp O, Deng L, Wilhelmsen Ø, Burheim OS. Electrodialysis for Removal of Impurities in Silver Electrowinning, Meet. Abstr. MA2023-01. 2023, 1608. https://doi.org/10.1149/ma2023-01241608mtgabs

- [17] Kumar Y, Khalangre A, Suhag R, Cassano A. Applications of Reverse Osmosis and Nanofiltration Membrane Process in Wine and Beer Industry. Membranes. 2025; 15:140. https://doi.org/10.3390/membranes15050140
- [18] Charcosset C. Ultrafiltration, Microfiltration, Nanofiltration and Reverse Osmosis in Integrated Membrane Processes. In Integrated Membrane Systems and Processes. Basile A, Charcosset C, Eds, Wiley: Hoboken, NJ, USA. 2016, 1-22. ISBN 978-1-118-73908-2.
- [19] Pati S, La Notte D, Clodoveo ML, Cicco G, Esti M. Reverse Osmosis and Nanofiltration Membranes for the Improvement of Must Quality. Eur. Food Res. Technol. 2014; 239:595–602.
- [20] Poonguzhali E, Fathima Aadilah Mohamed Ali, Ashish Kapoor, Prabhakar S. Performance of membrane assisted solvent extraction with homologous solvents for the removal and recovery of phenol, Desalination and Water Treatment. 2022; 251:64-78. https://doi.org/10.5004/dwt.2022.28117
- [21] Poonguzhali E, Ashish Kapoor, Prabhakar S. Membrane assisted process intensification and optimization for removal and recovery of phenol from industrial effluents, Separation and Purification Technology. 2023; 319:124026. https://doi.org/10.1016/j.seppur.2023.124026
- [22] Sanika Bhokarikar, Poojitha P, Vijay Vaishampayan, Adithya Sridhar, Gurumoorthi P, Ashish Kapoor. Chapter Thirteen Parameters affecting the efficiency of extraction systems in the food industries, Editor(s): Seid Mahdi Jafari, Sahar Akhavan-Mahdavi, In Unit Operation and Processing Equipment in the Food Industry. Extraction Processes in the Food Industry, Woodhead Publishing. 2024, 397-434. https://doi.org/10.1016/B978-0-12-819516-1.00010-7
- [23] Ming Li, Chuanying Liu, Anting Ding, Chengliang Xiao. A review on the extraction and recovery of critical metals using molten salt electrolysis. Journal of Environmental Chemical Engineering. 2023; 11(3):109746.
 - [24] https://doi.org/10.1016/j.jece.2023.109746
- [25] Yin T, Chen L, Xue Y, Zheng Y, Wang X, Yan Y, Zhang M, Wang G, Gao F, Qiu M. Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl-KCl melt. Int J. Min. Met. Mater. 2020; 27(12):1657–1665.
- [26] Yin T, Xue Y, Yan Y, Ma Z, Ma F, Zhang M, Wang G, Qiu M. Recovery and separation of rare earth elements by molten salt electrolysis, Int J. Min. Met. Mater. 2021; 28(6):899–914.
- [27] Roalson S R, Kweon J, Lawler D F, & Speitel G E, Jr. Enhanced Softening: Effects of Lime Dose and Chemical Additions. Journal AWWA. 2003; 95(11):97-109. https://doi.org/10.1002/j.1551-8833.2003.tb10496.x
- [28] Kailun Z, David P, Maryam J, Qingye L. Effect of MgO Slaking on Silica Removal during Warm Lime Softening of SAGD Produced Water. Industrial & Engineering Chemistry Research. 2021; 60(4):1839-1849. https://doi.org/10.1021/acs.iecr.0c05484
- [29] Hermosilla D, Ordóñez R, Blanco L, de la Fuente E, and Blanco A. pH and Particle Structure Effects on Silica Removal by Coagulation. Chemical Engineering Tecnology. 2012; 35(9):1632–1640.
- [30] Alsayer IA. A Comparative Study of the Effect of Sodium Aluminate, Magnesium Oxide, and Calcium Hydroxide on the Concentration of Silicon Dioxide in RO Water Plants. Journal of Chemical Engineering of Japan. 2025; 58(1). https://doi.org/10.1080/00219592.2025.2544885
 - [31] Lunevich L. Aqueous Silica and Silica Polymerisation. IntechOpen. 2020. https://doi.org/10.5772/intechopen.84824
- [32] Bifa Shimelis, Abel Saka, Leta Tesfaye Jule, Bulcha Bekele, Mesfin Redi, Nagaprasad N, Esakkiraj ES, Stalin B, Krishnaraj Ramaswamy. Preparation of hydrated lime quality for water treatment: to reduce silica concentration from hydrated lime up to standard specification, Desalination and Water Treatment. 2022; 251:35-42. https://doi.org/10.5004/dwt.2022.28089
- [33] Fathi Djouider, Essam Banoqitah, Abdulsalam Alhawsawi, Laboratory study of the silica removal in water by electro-Fenton method: Effect of operational parameters, Desalination and Water Treatment. 2024; 317:100118. https://doi.org/10.1016/j.dwt.2024.100118
- [34] Salvador Cob S, Hofs B, Maffezzoni C, Adamus J, Siegers WG, Cornelissen ER, Genceli Güner FE, Witkamp GJ. Silica removal to prevent silica scaling in reverse osmosis membranes, Desalination. 2014; 344:137-143. https://doi.org/10.1016/j.desal.2014.03.020
- [35] Park Y-M, Yeon K-N, Park C-H. Silica treatment technologies in reverse osmosis for industrial desalination: A review. Environmental Engineering Research. 2020; 25(6):819-829. https://doi.org/10.4491/eer.2019.353
- [36] Shuqin B, Jue H, Niqi A, Ru Y, Wei D. Scaling and cleaning of silica scales on reverse osmosis membrane: Effective removal and degradation mechanisms utilizing gallic acid, Chemosphere. 2024% 352:141427. https://doi.org/10.1016/j.chemosphere.2024.141427
- [37] Wenbin J, Xuesong X, David J, Lu L, Huiyao W, Pei X. Effectiveness and mechanisms of electromagnetic field on reverse osmosis membrane scaling control during brackish groundwater desalination, Separation and Purification Technology. 2022; 280:119823. https://doi.org/10.1016/j.seppur.2021.119823
- [38] Firdaous L, Dhulster P, Amiot J, Doyen A, Lutin F, Ve´zina L-P, Bazinet L. Investigation of the large-scale bioseparation of an antihypertensive peptide rom alfalfa white protein hydrolysate by an electromembrane process, J. Membr. Sci. 2010; 355:175–181.
- [39] Springer F, Laborie S, Guigui C. Removal of SiO2 nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: Investigation of process efficiency, deposit properties and fouling mechanism, Separation and Purification Technology. 2013; 108:6-14. https://doi.org/10.1016/j.seppur.2013.01.043
- [40] Cyril Roblet, Alain Doyen, Jean Amiot, Laurent Bazinet. Impact of pH on ultrafiltration membrane selectivity during electrodialysis with ultrafiltration membrane (EDUF) purification of soy peptides from a complex matrix. Journal of Membrane Science. 2013; 435:207-217. https://doi.org/10.1016/j.memsci.2013.01.045
- [41] Sun Y, Zhang R, Sun C, Liu Z, Zhang J, Liang S, Wang X. Quantitative Assessment of Interfacial Interactions Governing Ultrafiltration Membrane Fouling by the Mixture of Silica Nanoparticles (SiO_2 NPs) and Natural Organic Matter (NOM): Effects of Solution Chemistry. Membranes. 2023; 13:449. https://doi.org/10.3390/membranes13040449
- [42] Yangbo Q, Stef D, Long-Fei R, Changmei Z, Chao W, Jiahui S, Lei X, Yan Z, Bart VdB. Progress of Ultrafiltration-Based Technology in Ion Removal and Recovery: Enhanced Membranes and Integrated Processes. ACS EST Water. 2023; 3(7):1702–1719. https://pubs.acs.org/doi/10.1021/acsestwater.2c00625

- [43] Samin H, Ali N. Enhanced water flux through ultrafiltration polysulfone membrane via addition-removal of silica nanoparticles: Synthesis and characterization J. Appl. Polym. Sci. 2016; 133:43556. https://doi.org/10.1002/app.43556
- [44] Shemer H, Melki-Dabush N, & Semiat R. Removal of silica from brackish water by integrated adsorption/ultrafiltration process. Environ Sci Pollut Res. 2019; 26:31623–31631. https://doi.org/10.1007/s11356-019-06363-9
- [45] Mroczek EK, Graham D, Bacon L. Removal of arsenic and silica from geothermal fluid by electrocoagulation, Journal of Environmental Chemical Engineering. 2019; 7(4):103232. https://doi.org/10.1016/j.jece.2019.103232
- [46] Teng W, Liu S, Zhang X, Zhang F, Yang X, Xu M, & Hou J. Reliability Treatment of Silicon in Oilfield Wastewater by Electrocoagulation. Water. 2023; 15(1):206. https://doi.org/10.3390/w15010206
- [47] Pranjal P Das, Mukesh Sharma, Mihir K Purkait. Recent progress on electrocoagulation process for wastewater treatment: A review, Separation and Purification Technology. 2022; 292:121058. https://doi.org/10.1016/j.seppur.2022.121058
- [48] Héline C, Anh L-TP. Effective removal of silica and sulfide from oil sands thermal in-situ produced water by electrocoagulation. Journal of Hazardous Materials. 2019; 380:120880. https://doi.org/10.1016/j.jhazmat.2019.120880
- [49] Mudasar M, Nael Y, Behzad F-H, Edward PLR. Influence of operating conditions on the removal of silica and hardness by continuous electrocoagulation. Journal of Environmental Chemical Engineering. 2022; 10(6):108899. https://doi.org/10.1016/j.jece.2022.108899
- [50] Minghui L, Shuang M, Xi W, Mingmei W, Yutong Z, Zhanpeng Y, Erqiang W, Hui Z Tianyan X. Effective removal of dissolved silica from white carbon black wastewater by iron electrode electrocoagulation: Process optimization and simulation. Journal of Water Process Engineering. 2022; 47:102812. https://doi.org/10.1016/j.jwpe.2022.102812
- [51] Xin Z, Mengjia L, Mohd AMI, Cameron Crombie, Veeriah Jegatheesan. Performance of precipitation and electrocoagulation as pretreatment of silica removal in brackish water and seawater, Process Safety and Environmental Protection. 2019; 126:18-24. https://doi.org/10.1016/j.psep.2019.03.024
- [52] Isabel L, Ruben M, Rosa C, Angeles B. Efficiency of polyaluminum nitrate sulfate—polyamine hybrid coagulants for silica removal. Desalination and Water Treatment. 2016; 57(38):17973-17984. https://doi.org/10.1080/19443994.2015.1091992
- [53] Iván EV-M, Alejandra M-D, Sara P-C, Silvia LG-S. Electrocoagulation to Remove Silica from Cooling Towers Water. Tecnologia Y Ciencias Del Agua. 2014: 5(3):41-51.
- [54] Miranda R, Latour I, & Blanco A. Silica Removal from a Paper Mill Effluent by Adsorption on Pseudoboehmite and γ -Al₂O₃. Water. 2021; 13(15):2031. https://doi.org/10.3390/w13152031
- [55] Salvador Cob S, Yeme C, Hofs B, Cornelissen ER, Vries D, Gencelli Güner FE, Witkamp GJ. Towards zero liquid discharge in the presence of silica: Stable 98% recovery in nanofiltration and reverse osmosis. Sep. Purif. Technol. 2015; 140:23–31.
- [56] Sasan K, Brady PV, Krumhansl JL, Nenoff TM. Exceptional selectivity for dissolved silicas in industrial waters using mixed oxides. J. Water Process. Eng. 2017; 20:187–192.
- [57] Minehiko S, Ngan PTT, Takaomi K. Mesoporous γ-AlOOH as an adsorbent for silica removal from aqueous solutions. Desalination and Water Treatment. 2024; 317:100084. https://doi.org/10.1016/j.dwt.2024.100084
- [58] Andrea AA-H, Virginia H-M, Rigoberto T-G, María AP-C, Miguel A M-M, Norma A Rangel-Vázquez, Francisco J. Cervantes, Water reclamation from anodizing wastewaters by removing reactive silica with adsorption and precipitation methods. Journal of Environmental Management. 2023; 326(A):116683. https://doi.org/10.1016/j.jenvman.2022.116683
- [59] Gulcihan GK, Elena A, Huseyin D, Ramón M-M. Low-cost silica xerogels as potential adsorbents for ciprofloxacin removal. Sustainable Chemistry and Pharmacy. 2021; 22:100483. https://doi.org/10.1016/j.scp.2021.100483
- [60] Shakeel Z, Nisar A, Zarshad A, Muhammad B, Bushra A, Sajjad H, Saima G, Farman A, Rashid A, Sabir K, Hafiz MNI. Silica-based nanomaterials as designer adsorbents to mitigate emerging organic contaminants from water matrices. Journal of Water Process Engineering. 2020; 38:101675. https://doi.org/10.1016/j.jwpe.2020.101675
- [61] Ismail A, Ali SA, Saheed G, Nadeem B, Billel S, Sohaib A. Facile engineering of mesoporous silica for the effective removal of anionic dyes from wastewater: Insights from DFT and experimental studies. Heliyon. 2023; 9(11):e21356. https://doi.org/10.1016/j.heliyon.2023.e21356
- [62] Maldybayev G, Shayakhmetova R, Nurzhanova S, Sharipov R, Negim E-S, Alimzhanova A, Osipov P, Mukhametzhanova A, Usman A. Synthesis of Chemical Adsorbents for Purification of Heavy Oil Residues. International Journal of Technology. 2024; 15(3):792-802.
- [63] Shuxuan C, Shuqin B, Ru Y, Cong D, Wei D. Continuous silicic acid removal in a fixed-bed column using a modified resin: Experiment investigation and artificial neural network modeling. Journal of Water Process Engineering. 2022; 49:102937. https://doi.org/10.1016/j.jwpe.2022.102937
- [64] Toni SH, Tonni AK, Mika ETS. Removal of silicon from pulping whitewater using integrated treatment of chemical precipitation and evaporation. Chemical Engineering Journal. 2010; 158(3):584-592. https://doi.org/10.1016/j.cej.2010.01.058
- [65] Betz LD, Noll CA, Maguire JJ. Adsorption Process for Removal of Soluble Silica From Water. Journal of Fluids Engineering. 63(8):713-720. https://doi.org/10.1115/1.4019615
- [66] Guan YF, Marcos-Hernández M, Lu X, Cheng W, Yu HQ, Elimelech M, Villagrán D. Silica Removal Using Magnetic Iron-Aluminum Hybrid Nanomaterials: Measurements, Adsorption Mechanisms, and Implications for Silica Scaling in Reverse Osmosis. Environ Sci Technol. 2019; 53(22):13302-13311. https://doi.org/10.1021/acs.est.9b02883
- [67] Baca Ehren D. Comprehensive Silica Removal with Ferric Compounds for Industrial Wastewater Reuse. Master thesis. 2017. https://digitalrepository.unm.edu/ce_etds/176