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ABSTRACT

Accurate production forecasting in industrial hydrometallurgy is essential for process optimization
yet is often hindered by the scarcity of extensive historical data. This study demonstrates the
effectiveness of classical machine learning models as a data-efficient and interpretable alternative
to complex deep learning methods for predicting total copper mass. We evaluated four models—
Random Forest, Gradient Boosting, Decision Tree, and Linear Regression—using a methodology
centered on two key strategies: synthetically expanding a limited 150-day dataset into 10,000
simulated cycles (approximately 1.5 million data points) via data augmentation, and engineering
10-day lag features to provide the models with a temporal perspective for a 10-step-ahead
forecasting task. The results revealed exceptional predictive accuracy, with ensemble techniques
proving superior. The Random Forest model emerged as the top performer, achieving an R? of
0.974, an MAE of 0.088, and an RMSE of 0.111, closely followed by Gradient Boosting (R? of 0.971).
All models successfully captured the distinct 150-day cyclical dynamics of the production process,
showing a near-zero phase lag (0.00 £ <0.05 days). While performance on new, independent data
requires further validation, this work establishes a robust and transparent framework for
developing reliable forecasting tools in data-limited industrial environments.

Keywords: machine learning, hydrometallurgy, time-series forecasting, data augmentation,
copper extraction.
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Introduction

The global shift to renewable energy and
advanced technologies is driving an unprecedented
demand for copper, a metal fundamental to
electrification and sustainable development [[1],
[2]]. As the backbone of green technology, copper is
indispensable for manufacturing electric vehicles,
constructing wind turbines and solar panels, and
upgrading electrical grids. To meet this surging
demand, the mining industry is increasingly
extracting copper from complex, low-grade, and

often refractory ores, a practice that presents
profound operational and environmental challenges
[[3], [4]]. Conventional extraction processes are
notoriously energy-intensive, contributing
substantially to the industry's greenhouse gas
emissions [5].

Furthermore, these operations generate vast
quantities of waste, including tailings and slag, which
can contain hazardous materials like arsenic and
lead. If not managed meticulously, these by-
products pose long-term risks of environmental
contamination through acid rock drainage and heavy
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metal leaching into soil and water systems [[6], [7]].
Consequently, there is an urgent need to implement
more efficient, predictable, and environmentally
sound extraction methods. Hydrometallurgy
operations offer a promising route toward this goal
but require significant optimization to improve
resource efficiency and reduce their ecological
footprint [[8], [9]].

Hydrometallurgy represents a key technological
pathway for modern copper extraction, offering
greater selectivity and a lower environmental
impact compared to traditional pyrometallurgical
routes [[10], [11]]. However, realizing this potential
is contingent upon achieving a high degree of
process control, which relies heavily on accurate
predictive modeling [12]. The ability to reliably
forecast key performance indicators, such as the
total mass of recovered copper, is crucial for
enhancing operational stability, optimizing reagent
consumption, and ensuring consistent product
quality.

The core challenge lies in the complex and
nonlinear behavior of hydrometallurgy systems,
which are influenced by fluctuating ore mineralogy,
chemical reaction kinetics, and variations in
temperature and pressure. These factors make
traditional empirical and first-principles models
inadequate for capturing the full range of process
variability. This technological gap has led to the
widespread adoption of Artificial Intelligence (Al)
and Machine Learning (ML) as powerful tools
capable of modeling these intricate relationships by
identifying subtle patterns in historical data [[13],
[14], [15]].

While recent academic research has highlighted
deep learning models like LSTMs for their high
accuracy in time-series forecasting [7], their
practical implementation in industrial environments
is often impeded by significant hurdles. Deep
learning models are data-hungry, typically requiring
vast historical datasets that are often unavailable in
mining operations due to the high cost of sensors
and a lack of standardized data collection protocols
[16].

A second maijor barrier is their lack of
interpretability. These models often function as
'black  boxes,” preventing engineers from
understanding the logic behind a prediction. This
opacity erodes trust and limits the extraction of
actionable process insights, as an engineer cannot
confidently adjust a process variable without
knowing why the model suggested a change is
needed [17]. This creates a clear research gap: a lack
of studies demonstrating how  classical,

interpretable machine learning models can achieve
high predictive performance under the data
limitations common in industrial settings.

This study directly addresses this gap by
exploring more accessible, interpretable, and data-
efficient models. We aim to evaluate the
effectiveness of classical machine learning models
specifically Random Forest, Gradient Boosting, and
Decision Trees for forecasting total copper mass in
an industrial hydrometallurgical process. These
models were chosen for their robustness and lower
data requirements [16]. To overcome the challenge
of limited datasets, we employ a data augmentation
technique and engineer crucial lag features to adapt
these algorithms for time-series forecasting. By
focusing on their built-in interpretability, we aim to
deliver practical insights that can be leveraged for
process optimization, contributing to more efficient
and sustainable hydrometallurgical operations that
align with the principles of a circular economy [18].

Experimental part

This section outlines the systematic approach
undertaken to develop and evaluate classical
machine learning models for forecasting total
copper mass in a hydrometallurgical process. The
methodology is structured into five key stages: (1)
data collection and initial preparation, (2) data
augmentation to overcome data scarcity, (3) feature
engineering to prepare the time-series data for
classical models, (4) dataset splitting and
preprocessing, and (5) the development, training,
and evaluation of the selected regression models.

Data Collection and Initial Preparation. The
foundation of this research is a dataset sourced from
a full-scale industrial copper hydrometallurgy
operation [19]. This initial dataset provided a high-
fidelity snapshot of the process dynamics,
comprising time-series measurements collected
over a single, continuous 150-day operational cycle.
It originally contained 22 distinct process variables
(see Table 1), capturing a range of operational
parameters such as feed rates, solution volumes,
and chemical concentrations, alongside the primary
target variable for this study:

"Total Cu_mass". The wuse of real-world
industrial data, despite its limited duration, is critical
for ensuring the practical relevance and applicability
of the resulting predictive models.

A crucial first step in data preparation was
rigorous feature filtering to prevent data leakage a
common pitfall in predictive modeling where
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information from the future or from the target
variable itself inadvertently contaminates the
training data. In this context, three specific features
were identified and excluded from the dataset:
'Ore_to_metal_extr', 'Total_extraction_eff', and
'Cu_cat_growth'. These variables are derivative
metrics that are calculated after the total mass of
copper produced is already known. Including them
in the feature set would provide the models with

Table 1 - Dataset variables

direct information about the target, leading to
artificially inflated performance metrics and a model
that would be useless in a real-world forecasting
scenario where such information is not yet available.

Following this filtering process, the resulting
dataset used for model development consisted of 19
relevant, independent process variables, which
formed the basis for the subsequent feature
engineering and modeling stages.

Variable Name

Physical Measurement
(Units)

Description

Cu_feed

Copper concentration (g/L)

Concentration of copper in the feed solution entering the
extraction process

Cu_raf

Copper concentration (g/L)

Concentration of copper in the raffinate solution (the
aqueous phase after extraction)

Extraction_flow

Flow rate (m3/day)

Volume flow rate of solution during the extraction stage

Cu_extr_eff

Efficiency (%)

Percentage of copper successfully extracted from feed
solution

Pond_prod_sol_vol

Volume (m3)

Total volume of productive solution stored in the leaching
pond

Pond_raf_sol_vol

Volume (m3)

Total volume of raffinate solution stored in the pond

Concentration of copper in the organic phase before

B i L
Cu_org_ Copper concentration (g/L) loading (entering re-extraction)
Cu_org O Copper concentration (g/L) Concentration of copper.in the orga'lnic phase after loading
(leaving extraction)
Org_flow Flow rate (m?/day) Volume flow rate of the organic extractant through the
system
Cu_el B Copper concentration (g/L) Concentration of copperin the electrolyte before
electrolysis

El_flow_B Flow rate (m3/day) Volume flow rate of the electrolyte before electrolysis

Cu_el_eff org Efficiency (%) Percentage efficiency of copper transfer from organic phase
to electrolyte

Cu_el_eff sol Efficiency (%) Percentage efficiency of copper electrodeposition from

solution to cathodes

Cu_el_O

Copper concentration (g/L)

Concentration of copper in the electrolyte after electrolysis

El_flow_O

Flow rate (m3/day)

Volume flow rate of the electrolyte after electrolysis

Cu_cat_growth

Mass growth rate (kg/day)

Rate of copper deposition on cathodes during electrolysis

Total_Cu_mass

Mass (kg)

Total cumulative mass of copper produced (target
variable)

Ore_to_metal_extr

Ratio (kg ore/kg Cu)

Mass ratio of ore processed to metal extracted

Total_extraction_eff

Efficiency (%)

Overall percentage efficiency of the entire extraction

process
Ore_mass Mass (tons) Total mass of ore processed in the extraction operation
Initial_Cu_mass Mass (kg) Initial mass of copper in the ore before processing begins
Org_volume Volume (m3) Total volume of organic extractant in the system
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Data Augmentation. A significant challenge in
applying machine learning to industrial processes is
the frequent scarcity of extensive historical data. To
address this limitation and create a dataset robust
enough for training reliable models, a strategic data
augmentation strategy was employed. The objective
was to expand the dataset while preserving the
fundamental cyclical patterns and introducing
realistic process variability.

The augmentation process began by replicating
the original 150-day operational sequence to create
10,000 simulated cycles. This cyclical replication
established a long-term time-series structure. To
ensure these synthetic cycles were not mere
duplicate, a layer of stochastic noise was introduced.
Specifically, Gaussian noise was added
independently to each non-zero data point within
every copied cycle. The noise followed a normal
distribution with a mean of 0 and a standard
deviation of 0.02. This standard deviation was
carefully selected as a conservative value to simulate
minor, realistic fluctuations and sensor noise
commonly observed in industrial environments,
without distorting the underlying trends and causal
relationships within the data. Data points that were
originally recorded as zero, such as equipment
downtime or zero flow rates, were maintained at
zero to preserve their discrete informational
content.

By concatenating these 10,000 augmented
cycles sequentially, an expanded time-series dataset
was generated, comprising approximately 1,500,000
total data points (10,000 cycles x 150 days/cycle).
This large-scale synthetic dataset provided a
sufficient volume of data for the effective training
and validation of the machine learning models.

Feature Engineering: Lag Feature Creation.
Classical machine learning algorithms like Linear
Regression and Decision Trees are not inherently
designed to process sequential data. To enable
these models to capture the temporal
dependencies, memory, and cyclical patterns
present in the time-series data, a critical feature
engineering step was performed: the creation of lag
features. This technique transforms the time-series
forecasting problem into a tabular, supervised
learning format by providing the model with a
historical context of the process variables at each
time step.

The methodology involved creating a "look-
back" window of 10 days. For each day t in the
dataset, the values of key features from the 10
preceding days (t-1, t-2, ..., t-10) were appended as

new features to the data point at day t. The most
critical variable to be lagged was the target variable
itself, "Total_Cu_mass". This created ten new
features: Total_Cu_mass_lag_1,
Total Cu_mass_lag 2, and so on, up to
Total_Cu_mass_lag_10. Past values of the target are
often the most powerful predictors of its future
values.

Dataset Splitting and Preprocessing. With the
data transformed into a suitable tabular format, the
next step was to prepare it for model training and
evaluation. The forecasting problem was defined as
a 10-step-ahead task, where the target variable (y)
for each input set (X) was the "Total_Cu_mass" value
10 days into the future (at time step t+10).

To fairly evaluate the models' prediction
abilities, the data was divided based on time. The
first 80% of the information was used for training the
model, while the final 20% was set aside for testing
its performance. This chronological split is essential
for time-series data as it prevents the model from
being trained on data that occurs after the test data,
thus simulating a real-world scenario where the
model must predict future, unseen values.

Lastly, all parts of the data were put into a
common format. The input (X) and the output (y)
were transformed using StandardScaler, that
rescales the data to have a mean of 0 and a standard
deviation of 1. The scaler was fitted only on the
training data to learn the distribution parameters
(mean and standard deviation). These learned
parameters were then used to transform both the
training and the testing sets, a critical practice that
prevents any information from the test set from
leaking into the training process.

Model Development. Four classical machine
learning regression models were selected for a
comparative evaluation of their effectiveness in this
forecasting task. Each model was trained on the
scaled training data using its default
hyperparameters in Scikit-learn to provide a
baseline comparison of their inherent capabilities.

1. Linear Regression: Fundamental modeling
technigue that finds the best-fitting straight line to
represent the relationship between inputs and an
output. It calculates the line that results in the
smallest possible overall error between its
predictions and the actual data points. The model is
represented by the equation:

Y =Bo+ Bix1+ Baxy + o Ppxy + € (1)
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where y is the predicted value, B, is the
intercept, S ... B, are the feature coefficients, and €
is the error term. Its simplicity makes it highly
interpretable [20].

2. Decision Tree Regressor: A non-parametric
model that learns to predict a target value by
creating a set of decision rules inferred from the
data features. It operates by recursively partitioning
the feature space into several disjoint regions, R,
forming a tree-like structure. For any new data point
x that falls into a specific terminal region (a leaf
node) R,,,, the model's prediction is simply the mean
of the training target values within that region. This
predictive mechanism is defined as:

M
§=F00 =) cnllxeR) @)
where ¢ = - Sier,, Vi 3)

Here, M is the total number of terminal regions
(leaves), c,, is the mean target value for the N,
training samples in region R,,,, and I is the indicator
function. This transparent structure makes decision
trees highly interpretable [21].

3. Random Forest Regressor: Powerful model
that works by building hundreds of individual
decision trees and then pooling their predictions. To
get a final answer, it simply averages the results
from all the separate trees in the "forest." This team-
based approach makes the model much more
accurate and stable than a single tree would be on
its own:

B
1
9==> @ @)

where B is the number of trees and f;, (x) is the
prediction of the b-th tree [22].

4. Gradient Boosting Regressor: A team-based
model that builds a series of simple decision trees
one after the other. Unlike Random Forest where
the trees are independent, each new tree in
Gradient Boosting is a specialist trained to fix the
mistakes (known as residuals) made by the team of
trees that came before it. The final prediction is the
sum of the contributions from all trees in the chain:

Ep(x) = Fpp_q (%) + Vih (%) (5)

where F,,_,(x) is the previous model, h,,(x) is
the new weak learner (tree), and y,, is the learning
rate. This method is highly effective and has been
successfully applied in many fields [23].

Model Evaluation. The performance of these
trained models was rigorously assessed on the held-
out test set using a comprehensive suite of standard
regression metrics. This set of metrics was chosen to
provide a holistic view of model accuracy, error
magnitude, and explanatory power.

Mean Absolute Error (MAE):
n
1 ~
MAE == |y = 34 @
i=1

where n is the number of samples, y;is the
actual value, and ¥; is the predicted value.

Root Mean Squared Error (RMSE):

n
1
RMSE = |- (v = 9))? (7)
i=1

Coefficient of Determination (R?):

Z?:1(3’i - 371')2
Rz =12l MY 8
SO = 9)? ®)

where ¥ is the mean of the actual values.

Mean Absolute Percentage Error (MAPE):

100%
MAPE = — |

Yi—DYi | (9)
Vi

i=1
Results and discussion

This section presents the performance
evaluation of the four classical machine learning
models developed for forecasting the total mass of
copper produced. The analysis includes a
comparison of quantitative performance metrics, a
qualitative assessment of the models' ability to
capture cyclical process dynamics, and an
examination of their error distributions.

Model Performance Overview. The overall
results show that the implemented methodology,
combining data augmentation with lag feature
engineering, allowed classical machine learning
models to achieve high predictive accuracy. The
performance, evaluated using the coefficient of
determination (R?), indicates that all models were
able to explain a significant portion of the variance
in the target variable.

The ensemble methods, Random Forest and
Gradient Boosting, emerged as the leaders in
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performance, achieving R? scores of 0.974 and
0.971, respectively. This underscores their reliability
in handling the complex relationships within the
engineered feature set, as they inherently average
the errors of multiple individual models and better
manage non-linear dependencies. The Linear
Regression model also demonstrated strong
performance with an R? of 0.965, which suggests the
presence of a strong linear relationship between the
lagged features and the target variable confirming
the success of the feature engineering phase. The
standalone Decision Tree model proved to be the
least effective, with an R? of 0.946, indicating that it
captured the underlying patterns less accurately,
likely due to its tendency to overfit to specific noise
in the data. A visual comparison of the R? scores is
provided in Figure 1.

As detailed in Table 2, the Random Forest model
consistently outperformed the others, showing the
lowest values for MAE (0.088), RMSE (0.111), and
MAPE (98.8). The Gradient Boosting model followed
closely, confirming the superiority of ensemble
techniques. Conversely, the Decision Tree model
demonstrated the highest error across all metrics,
which aligns with its lower R? score and confirms its
position as the least accurate model in this
comparative study.

Table 2 - Comprehensive Performance Metrics for All
Models

Model MAE RMSE R? MAPE (%)
Random |, \ee3 | 0.1112 | 0.9743 | 98.80
Forest
Gradlgnt 0.0929 | 0.1177 | 0.9713 | 114.82
Boosting
Hnear | 1041 | 0.1303 | 0.9648 | 110.80
Regression
Decision 0.1276 | 0.1607 | 0.9464 161.93
Tree

Forecasting of Cyclical Process Dynamics.
Beyond quantitative metrics, it is crucial to assess
the models' ability to reproduce the characteristic
cyclical patterns of the hydrometallurgical process.
Figure 2 shows the actual Total Cu_mass values
compared with the values predicted by each model
for a random sample cycle from the test set.

This visualization convincingly confirms that all
four models successfully learned and reproduced
the pronounced cyclical behavior, including the
sharp peaks and troughs inherent to the 150-day
production cycle. This qualitative result is highly
significant, as it validates that the feature

engineering strategy specifically, the creation of lag
features effectively provided the models with the
necessary historical context to understand the time-
series dynamics. The models' predictions accurately
track the sharp rise during the main production
phase and the subsequent declines, demonstrating
a full grasp of the process's temporal rhythm.
Although all models follow the general pattern, the
predictions from Random Forest and Gradient
Boosting align more closely with the actual values,
which is consistent with their lower error metrics. To
complement Figure 2, Table 3 summarizes four
synchronization metrics calculated for each test
cycle: peak shift (days), amplitude deviation (%),
phase lag (days; cross-correlation), and per-cycle
MAE. Across models, the phase lag is essentially zero
(0.00 + <0.05 days), indicating that the forecasts are
well synchronized with the observed cycle. Gradient
Boosting and Random Forest achieve the lowest per-
cycle MAE (0.09 £ 0.01), while Linear Regression is
slightly higher (0.10 £ 0.01) and Decision Tree is the
highest (0.13 £ 0.01). Both ensemble models tend to
underestimate cycle amplitude (-14.05 £ 2.84% and
-12.23 £ 2.92%, respectively), whereas the Decision
Tree slightly overestimates it (+1.02 + 4.90%). The
near-zero peak shifts (e.g., -2.34 + 35.44 days for
Gradient Boosting and -0.46 * 35.47 days for
Random Forest) further confirm that predicted
phases are aligned with the actual process dynamics
(Table 3).

Table 3 - Quantitative comparison of cyclical alignment
between predictions and observations

Model Peak shift | Amplitude Phase MAE
(days) deviation lag per
(%) (days) cycle
Linear -0.34 + | -5.38%4.51 | 0.00 % | 0.10 %
Regression 35.12 0.00 0.01
Decision 0.98 + | 1.02+4.90 0.00 +]| 013 ¢
Tree 35.12 0.05 0.01
Random -0.46 + | -1223 +|0.00 | 0.09 %
Forest 35.47 2.92 0.00 0.01
Gradient -234 + | -1405 +|0.00 | 0.09 %
Boosting 35.44 2.84 0.00 0.01
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Comparison of the coefficient of determination (R?)

1.00

Figure 1 - Comparison of the Coefficient of Determination (R?)

Analysis of Prediction Errors. To further analyze
model performance, the distribution of prediction
errors (residuals) was examined. The residual is the
difference between the actual and predicted value
for each data point. In an ideal model, the residuals
should be randomly scattered around zero without
any discernible pattern.

Figure 3 displays the residuals for each model
plotted against the predicted values. For the most
effective models, Random Forest and Gradient
Boosting, the errors are tightly and symmetrically
clustered around the zero line. This indicates that
the models are unbiased meaning their errors are
not systematically high or low for specific ranges of
predicted values and that they have effectively
captured all the systematic information in the data.
The residuals for Linear Regression and, most
dispersed. This visually confirms their higher error
rates as presented in Table 1 and indicates lower
reliability and a higher risk of significant prediction
errors under certain operating conditions. This
analysis reinforces the conclusion that the ensemble
models provide not only more accurate but also
more reliable and consistent predictions, making
them preferable for practical application.

To deepen the error analysis beyond accuracy
scores and visuals, we perform formal residual
diagnostics; the results are summarized in Table 4,

that reports residual diagnostics on the test set. The
mean residuals are approximately zero for all
models (|bias| £ 3x107#), confirming the absence of
systematic shift. Random Forest exhibits the
smallest spread and error (SD = 0.1115; RMSE =
0.1115), followed by Gradient Boosting (0.1183),
Linear Regression (0.1306) and Decision Tree
(0.1605). The table also includes p-values for
normality, autocorrelation (Ljung—Box, lag 20), and
heteroscedasticity (Breusch—Pagan); where p > 0.05,
the corresponding null hypothesis is not rejected,
supporting the visual conclusions from the residual
plots.

Table 4 - Residual diagnostics on the test set

Model Mean SD residual | RMSE
residual

Linear -0.000319 | 0.130644 0.130644

Regression

Decision Tree | -0.000057 | 0.160467 0.160467

Random -0.000004 | 0.111513 0.111513

Forest

Gradient -0.000061 | 0.118252 0.118252

Boosting
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Actual and Predicted Total Cu_mass values for a random cycle

Total_ Cu_mass

&
Time step

Figure 2 - Actual vs. Predicted Values for a Sample Cycle

Residual plots for the random cycle (all models)

Residuals (Actual - Forecast]

a0
Predicted Total_Cu_mass values

Figure 3 - Residual plots for the random cycle

Conclusions

This study successfully demonstrated that
classical machine learning models offer a practical
and highly effective solution for forecasting total
copper mass in a complex hydrometallurgical
process. By employing a strategic data
augmentation technique to overcome the common
industrial challenge of data scarcity, and by
engineering lag features to provide a temporal
context, we have shown that even non-sequential
models can achieve high predictive accuracy. The
results clearly indicate that ensemble methods,
specifically Random Forest and Gradient Boosting,
are superior in this task, delivering the highest R?
values and the lowest prediction errors. These
models not only provided accurate quantitative
forecasts but also proved capable of perfectly
reproducing the characteristic 150-day cyclical
dynamics of the production process, validating the
overall methodological approach.

The primary contribution of this work is
providing an accessible, interpretable, and data-
efficient alternative to more complex deep learning

architectures. The feature importance analysis
confirmed that the models learned logical
relationships, with the most recent historical values
of copper mass being the most influential predictors.
This level of transparency is invaluable for industrial
applications, as it builds trust and provides
actionable insights for process engineers, enabling
more stable and resource-efficient operations that
directly contribute to sustainability goals.

However, this study has important limitations
that must be acknowledged. The models were
trained and validated on a dataset generated from a
single operational cycle. While this proves the
models' ability to learn and replicate known
patterns, their generalization performance on
entirely new, independent operational data—which
may contain unforeseen variations or process drifts
remains unconfirmed. Furthermore, the models
were trained using default hyperparameters; a
thorough optimization process could potentially
yield further performance improvements.

Future work should prioritize validating these
models on new, real-world data to assess their
robustness. To further improve predictive power,
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integrating process knowledge through hybrid
modeling approaches which combine machine
learning with first-principles methods could capture
complex physicochemical interactions more
effectively. Ultimately, this research provides a
strong foundation for developing reliable, Al-driven
forecasting tools. By enabling more predictable and
optimized production cycles, these tools can reduce
waste and energy consumption, advancing the
metallurgical industry's alignment with circular
economy principles and enhancing overall

operational sustainability.
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TYAIHAEME

OHepKacinTiKk ruapomeTannypruaga eHaipicti gan 6omkay npouecTi OHTaWNaHAblipy YLWiH
MaHbI34bl, anainga ofaH KebiHece ayKpIMAbl TAPUXM AePEKTEPAIH TanLbl/bIFbl Kegepri KeaTipeai.
Byn 3epTrey Kannbl MbIC MaccacblH 6osKay YWiH Kypaeni TepeHAeTin OKpITy aaicTepiHe
AepekTepai YHEMAEUTIH KaHe TYCIHIKTI 6anama peTiHAe KAaCCUMKaNblK MaLIMHANbIK OKbITY
MoAenbAepiHin, TMimainirin Kepcetegdi. bi3 eki Herisri cTpatervara HerisgenreH sgictemeni
KONAaHa oTbipbin, TepT mogenbai, Kesgelicok opmaH (Random Forest), MpagueHTTi BYCTUHT
(Gradient Boosting), LWewimaep afawbl (Decision Tree) »kaHe CbI3bIKTbIK perpeccusHbl (Linear
Regression) 6afanagblk: AepeKTePAi TONbIKTbIPY (ayrmeHTaumsa) apKpiabl wekteyai 150 KyHAiK
AepeKTep *KublHTbIFbIH 10 000 MogenbaeHTeH LUKATe (lwamameH 1,5 MUANNOH AepeKTep HYKTecH)
AeliH CUHTeTUKaNbIK Typae KeHelTy aHe 10 Kagam anfa 6omkay miHZeTi yWwiH mogenbaepre
YaKbITTbIK, Nepcnektuea bepy makcatbiHaa 10 KyHAiK Kigipic 6enrinepiH Kypy. HaTuxkenep
6o/KayaplH, alpbiKWwa A44IMH KepceTTi, byn peTTe aHCamb/bAiK aAicTepaiH, apTbiKWblibIFbl
aanengeHai. Kesaencok opmaH MOAEsNi eH, oFapbl HaTUXKe KepceTin, R? 0.974, MAE 0.088 xaHe
RMSE 0.111 maHAepiHe KON KeTKi3Aj, oAaH Ca/l faHa Kanbin KolFaH MpaaneHTTi 6yctuHr (R20.971)
6ongpbl. Bapabik Mogenbaep eHaipic NpoueciHiH, aiKkbiH 150 KYHAIK LMKAAIK AMHAMMUKACBIH CITTi
aHbIKTan, Henre »yblK daszanbik Kigipicti (0.00 + <0.05 KyH) KepceTTi. aHa, Toyencis aepektepaeri
BHIMAINIK KOCbIMLIA TeKcepyai KaxeT etce Ae, byn XKymbiC AepeKTepi LeKTeyNi eHepKacinTik
opTaga ceHimai 6onKay KypanaapbliH 93ip/ey YLLiH TYPaKTbl }KaHe allblK Heri3 Kanangpl.
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MporHo3upoBaHue LMKNOB NPOM3BOACTBA MeAU B rMAPOMETANIYPrumn C NOMOLLbIO
UHTEpPNpeTUpPyemMoro MallMHHOro obyyeHus
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AHHOTAUMA

TouHoe NporHo3npoBaHune 06 bLEMOB NPOU3BOACTBA B NPOMbILLNEHHON MMAPOMETaNNyprum umeeT
pelaoLlee 3HaYeHme 418 ONTUMM3auMu MPOLLECCOB, OAHAKO €ro 4acTo 3aTpyfHAeT HexsaTKa
OBLIMPHBIX WMCTOPUYECKUX AaHHbIX. [aHHOe uccaefoBaHME AEMOHCTPUpYeT 3¢¢EeKTUBHOCTb
KNAcCMYEeCKMX MoZenei MalMHHOrO 06yYeHMss KaK IKOHOMMUYHOM C TOYKM 3PEHMA AaHHbIX U
MHTEPNPeTMPYEMON  afbTePHATUBbI  CAOXHBLIM  MeTodam  rybokoro  obyyeHus  ans
NPOrHo3npoBaHmA obLwei maccol meaun. Mbl oueHuAmn YeTbipe mogenu, CaydaitHblii nec (Random
Forest), lpagueHTHbI 6ycTuHr (Gradient Boosting), [epeso peweHnit (Decision Tree) u
NunenHyto perpeccuio (Linear Regression) Mcnonb3ys MeTOLONOMUIO, OCHOBAHHYIO Ha ABYX

Mocrynuna: 20 ceHmabps 2025 K/IOUEBbIX CTPATErnAX: CUHTETUYECKOE pacLUMpeHe OrpaHUUYeHHOro Habopa AaHHbIX 3a 150 gHeil
PeueHsnpoBaHue: 10 okmabpa 2025

Ao 10 000 cmopennpoBaHHbIX UMKAOB (MpubausutenbHo 1,5 MWMAIMOHA TOYEK AaHHbIX) C
MpuHATa B nevatb: 16 okmabpa 2025

NMOMOLLbIO  ayrMeHTauun [AaHHblX, W co3gaHuve 10-AHEeBHbIX NaroBbiX MPU3HAKOB ANA
npeaocTaBAeHUA MOAENAM BPEMEHHO NepcneKkTUBbI ANA 334341 NPOrHo3npoBaHmnAa Ha 10 waros
Bnepes. Pe3ynbTaTbl MOKasanM WCKAIOYMTENbHYIO TOYHOCTb MPOrHO3MPOBaAHWUA, MPU 3TOM
aHcambnesble MeTOAbl NPOAEMOHCTPUPOBANM MNPeBOCXoAcTBo. Mogenb CnyyaiiHoro neca
noKasasna Hauaydywue pesynbTaTbl, gocturHys R? 0.974, MAE 0.088 v RMSE 0.111, 3a Heii ¢
HeboNblWKUM OTCTaBaHWeM cneayeT pagmeHTHbin ByctuHr (R? 0.971). Bce mogenu ycnewHo
ynosunn ot4yetamsyto 150-AHEBHYIO UMKANYECKYIO AMHAMWKY NPOU3BOACTBEHHOrO npolecca,
AEMOHCTPUPYA noyTM Hynesoe ¢asoBoe 3anasgbieaHne (0.00 = <0.05 pgHA). Xota
NPOV3BOAMUTENBHOCTb HA HOBbIX, HE3AaBUCMMbIX AAHHbIX TPEOYeT AONONHUTENbHOW MPOBEPKM,
JaHHana paboTa co34aeT HAfEXKHYI0 W MPO3PayHyl0 OCHOBY A/1A Pa3paboTKM HaAEXHbIX
MHCTPYMEHTOB MPOrHO3MPOBaHWUA B MPOMbIL/IEHHbIX YC/0BMAX C OrpaHUYeHHbIM 06bemom
AaHHbIX.

Knroveebie cnoea: malMHHOE OByyeHWe, TMAPOMETaNNYPrvs, MPOrHO3MPOBaHUE BPEMEHHbIX
pPALOB, ayrMEHTaLMA AaHHbIX, U3BIEYEHE Meau.
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