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ABSTRACT 
Accurate production forecasting in industrial hydrometallurgy is essential for process optimization 

yet is often hindered by the scarcity of extensive historical data. This study demonstrates the 

effectiveness of classical machine learning models as a data-efficient and interpretable alternative 

to complex deep learning methods for predicting total copper mass. We evaluated four models—

Random Forest, Gradient Boosting, Decision Tree, and Linear Regression—using a methodology 

centered on two key strategies: synthetically expanding a limited 150-day dataset into 10,000 

simulated cycles (approximately 1.5 million data points) via data augmentation, and engineering 

10-day lag features to provide the models with a temporal perspective for a 10-step-ahead 

forecasting task. The results revealed exceptional predictive accuracy, with ensemble techniques 

proving superior. The Random Forest model emerged as the top performer, achieving an R² of 

0.974, an MAE of 0.088, and an RMSE of 0.111, closely followed by Gradient Boosting (R² of 0.971). 

All models successfully captured the distinct 150-day cyclical dynamics of the production process, 

showing a near-zero phase lag (0.00 ± ≤0.05 days). While performance on new, independent data 

requires further validation, this work establishes a robust and transparent framework for 

developing reliable forecasting tools in data-limited industrial environments. 

Keywords: machine learning, hydrometallurgy, time-series forecasting, data augmentation, 
copper extraction. 
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Introduction 

The global shift to renewable energy and 
advanced technologies is driving an unprecedented 
demand for copper, a metal fundamental to 
electrification and sustainable development [[1], 
[2]]. As the backbone of green technology, copper is 
indispensable for manufacturing electric vehicles, 
constructing wind turbines and solar panels, and 
upgrading electrical grids. To meet this surging 
demand, the mining industry is increasingly 
extracting copper from complex, low-grade, and 

often refractory ores, a practice that presents 
profound operational and environmental challenges 
[[3], [4]]. Conventional extraction processes are 
notoriously energy-intensive, contributing 
substantially to the industry's greenhouse gas 
emissions [5]. 

Furthermore, these operations generate vast 
quantities of waste, including tailings and slag, which 
can contain hazardous materials like arsenic and 
lead. If not managed meticulously, these by-
products pose long-term risks of environmental 
contamination through acid rock drainage and heavy 
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metal leaching into soil and water systems [[6], [7]]. 
Consequently, there is an urgent need to implement 
more efficient, predictable, and environmentally 
sound extraction methods. Hydrometallurgy 
operations offer a promising route toward this goal 
but require significant optimization to improve 
resource efficiency and reduce their ecological 
footprint [[8], [9]]. 

Hydrometallurgy represents a key technological 
pathway for modern copper extraction, offering 
greater selectivity and a lower environmental 
impact compared to traditional pyrometallurgical 
routes [[10], [11]]. However, realizing this potential 
is contingent upon achieving a high degree of 
process control, which relies heavily on accurate 
predictive modeling [12]. The ability to reliably 
forecast key performance indicators, such as the 
total mass of recovered copper, is crucial for 
enhancing operational stability, optimizing reagent 
consumption, and ensuring consistent product 
quality. 

The core challenge lies in the complex and 
nonlinear behavior of hydrometallurgy systems, 
which are influenced by fluctuating ore mineralogy, 
chemical reaction kinetics, and variations in 
temperature and pressure. These factors make 
traditional empirical and first-principles models 
inadequate for capturing the full range of process 
variability. This technological gap has led to the 
widespread adoption of Artificial Intelligence (AI) 
and Machine Learning (ML) as powerful tools 
capable of modeling these intricate relationships by 
identifying subtle patterns in historical data [[13], 
[14], [15]]. 

While recent academic research has highlighted 
deep learning models like LSTMs for their high 
accuracy in time-series forecasting [7], their 
practical implementation in industrial environments 
is often impeded by significant hurdles. Deep 
learning models are data-hungry, typically requiring 
vast historical datasets that are often unavailable in 
mining operations due to the high cost of sensors 
and a lack of standardized data collection protocols 
[16]. 

A second major barrier is their lack of 
interpretability. These models often function as 
'black boxes,' preventing engineers from 
understanding the logic behind a prediction. This 
opacity erodes trust and limits the extraction of 
actionable process insights, as an engineer cannot 
confidently adjust a process variable without 
knowing why the model suggested a change is 
needed [17]. This creates a clear research gap: a lack 
of studies demonstrating how classical, 

interpretable machine learning models can achieve 
high predictive performance under the data 
limitations common in industrial settings. 

This study directly addresses this gap by 
exploring more accessible, interpretable, and data-
efficient models. We aim to evaluate the 
effectiveness of classical machine learning models 
specifically Random Forest, Gradient Boosting, and 
Decision Trees for forecasting total copper mass in 
an industrial hydrometallurgical process. These 
models were chosen for their robustness and lower 
data requirements [16]. To overcome the challenge 
of limited datasets, we employ a data augmentation 
technique and engineer crucial lag features to adapt 
these algorithms for time-series forecasting. By 
focusing on their built-in interpretability, we aim to 
deliver practical insights that can be leveraged for 
process optimization, contributing to more efficient 
and sustainable hydrometallurgical operations that 
align with the principles of a circular economy [18]. 

Experimental part 

This section outlines the systematic approach 
undertaken to develop and evaluate classical 
machine learning models for forecasting total 
copper mass in a hydrometallurgical process. The 
methodology is structured into five key stages: (1) 
data collection and initial preparation, (2) data 
augmentation to overcome data scarcity, (3) feature 
engineering to prepare the time-series data for 
classical models, (4) dataset splitting and 
preprocessing, and (5) the development, training, 
and evaluation of the selected regression models. 

Data Collection and Initial Preparation. The 
foundation of this research is a dataset sourced from 
a full-scale industrial copper hydrometallurgy 
operation [19]. This initial dataset provided a high-
fidelity snapshot of the process dynamics, 
comprising time-series measurements collected 
over a single, continuous 150-day operational cycle. 
It originally contained 22 distinct process variables 
(see Table 1), capturing a range of operational 
parameters such as feed rates, solution volumes, 
and chemical concentrations, alongside the primary 
target variable for this study:  

"Total_Cu_mass". The use of real-world 
industrial data, despite its limited duration, is critical 
for ensuring the practical relevance and applicability 
of the resulting predictive models.  

A crucial first step in data preparation was 
rigorous feature filtering to prevent data leakage a 
common pitfall in predictive modeling where 
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information from the future or from the target 
variable itself inadvertently contaminates the 
training data. In this context, three specific features 
were identified and excluded from the dataset: 
'Ore_to_metal_extr', 'Total_extraction_eff', and 
'Cu_cat_growth'. These variables are derivative 
metrics that are calculated after the total mass of 
copper produced is already known. Including them 
in the feature set would provide the models with 

direct information about the target, leading to 
artificially inflated performance metrics and a model 
that would be useless in a real-world forecasting 
scenario where such information is not yet available. 

Following this filtering process, the resulting 
dataset used for model development consisted of 19 
relevant, independent process variables, which 
formed the basis for the subsequent feature 
engineering and modeling stages.  

Table 1 - Dataset variables 

Variable Name 
Physical Measurement 

(Units) 
Description 

Cu_feed Copper concentration (g/L) 
Concentration of copper in the feed solution entering the 

extraction process 

Cu_raf Copper concentration (g/L) 
Concentration of copper in the raffinate solution (the 

aqueous phase after extraction) 

Extraction_flow Flow rate (m³/day) Volume flow rate of solution during the extraction stage 

Cu_extr_eff Efficiency (%) 
Percentage of copper successfully extracted from feed 

solution 

Pond_prod_sol_vol Volume (m³) 
Total volume of productive solution stored in the leaching 

pond 

Pond_raf_sol_vol Volume (m³) Total volume of raffinate solution stored in the pond 

Cu_org_B Copper concentration (g/L) 
Concentration of copper in the organic phase before 

loading (entering re-extraction) 

Cu_org_O Copper concentration (g/L) 
Concentration of copper in the organic phase after loading 

(leaving extraction) 

Org_flow Flow rate (m³/day) 
Volume flow rate of the organic extractant through the 

system 

Cu_el_B Copper concentration (g/L) 
Concentration of copper in the electrolyte before 

electrolysis 

El_flow_B Flow rate (m³/day) Volume flow rate of the electrolyte before electrolysis 

Cu_el_eff_org Efficiency (%) 
Percentage efficiency of copper transfer from organic phase 

to electrolyte 

Cu_el_eff_sol Efficiency (%) 
Percentage efficiency of copper electrodeposition from 

solution to cathodes 

Cu_el_O Copper concentration (g/L) Concentration of copper in the electrolyte after electrolysis 

El_flow_O Flow rate (m³/day) Volume flow rate of the electrolyte after electrolysis 

Cu_cat_growth Mass growth rate (kg/day) Rate of copper deposition on cathodes during electrolysis 

Total_Cu_mass Mass (kg) 
Total cumulative mass of copper produced (target 

variable) 

Ore_to_metal_extr Ratio (kg ore/kg Cu) Mass ratio of ore processed to metal extracted 

Total_extraction_eff Efficiency (%) 
Overall percentage efficiency of the entire extraction 

process 

Ore_mass Mass (tons) Total mass of ore processed in the extraction operation 

Initial_Cu_mass Mass (kg) Initial mass of copper in the ore before processing begins 

Org_volume Volume (m³) Total volume of organic extractant in the system 
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       Data Augmentation. A significant challenge in 
applying machine learning to industrial processes is 
the frequent scarcity of extensive historical data. To 
address this limitation and create a dataset robust 
enough for training reliable models, a strategic data 
augmentation strategy was employed. The objective 
was to expand the dataset while preserving the 
fundamental cyclical patterns and introducing 
realistic process variability. 

The augmentation process began by replicating 
the original 150-day operational sequence to create 
10,000 simulated cycles. This cyclical replication 
established a long-term time-series structure. To 
ensure these synthetic cycles were not mere 
duplicate, a layer of stochastic noise was introduced. 
Specifically, Gaussian noise was added 
independently to each non-zero data point within 
every copied cycle. The noise followed a normal 
distribution with a mean of 0 and a standard 
deviation of 0.02. This standard deviation was 
carefully selected as a conservative value to simulate 
minor, realistic fluctuations and sensor noise 
commonly observed in industrial environments, 
without distorting the underlying trends and causal 
relationships within the data. Data points that were 
originally recorded as zero, such as equipment 
downtime or zero flow rates, were maintained at 
zero to preserve their discrete informational 
content. 

By concatenating these 10,000 augmented 
cycles sequentially, an expanded time-series dataset 
was generated, comprising approximately 1,500,000 
total data points (10,000 cycles × 150 days/cycle). 
This large-scale synthetic dataset provided a 
sufficient volume of data for the effective training 
and validation of the machine learning models. 

Feature Engineering: Lag Feature Creation. 
Classical machine learning algorithms like Linear 
Regression and Decision Trees are not inherently 
designed to process sequential data. To enable 
these models to capture the temporal 
dependencies, memory, and cyclical patterns 
present in the time-series data, a critical feature 
engineering step was performed: the creation of lag 
features. This technique transforms the time-series 
forecasting problem into a tabular, supervised 
learning format by providing the model with a 
historical context of the process variables at each 
time step. 

The methodology involved creating a "look-
back" window of 10 days. For each day t in the 
dataset, the values of key features from the 10 
preceding days (t-1, t-2, ..., t-10) were appended as 

new features to the data point at day t. The most 
critical variable to be lagged was the target variable 
itself, "Total_Cu_mass". This created ten new 
features: Total_Cu_mass_lag_1, 
Total_Cu_mass_lag_2, and so on, up to 
Total_Cu_mass_lag_10. Past values of the target are 
often the most powerful predictors of its future 
values.  

       Dataset Splitting and Preprocessing. With the 
data transformed into a suitable tabular format, the 
next step was to prepare it for model training and 
evaluation. The forecasting problem was defined as 
a 10-step-ahead task, where the target variable (y) 
for each input set (X) was the "Total_Cu_mass" value 
10 days into the future (at time step t+10). 

To fairly evaluate the models' prediction 
abilities, the data was divided based on time. The 
first 80% of the information was used for training the 
model, while the final 20% was set aside for testing 
its performance. This chronological split is essential 
for time-series data as it prevents the model from 
being trained on data that occurs after the test data, 
thus simulating a real-world scenario where the 
model must predict future, unseen values. 

Lastly, all parts of the data were put into a 
common format. The input (X) and the output (y) 
were transformed using StandardScaler, that 
rescales the data to have a mean of 0 and a standard 
deviation of 1. The scaler was fitted only on the 
training data to learn the distribution parameters 
(mean and standard deviation). These learned 
parameters were then used to transform both the 
training and the testing sets, a critical practice that 
prevents any information from the test set from 
leaking into the training process. 

Model Development. Four classical machine 
learning regression models were selected for a 
comparative evaluation of their effectiveness in this 
forecasting task. Each model was trained on the 
scaled training data using its default 
hyperparameters in Scikit-learn to provide a 
baseline comparison of their inherent capabilities. 

1. Linear Regression: Fundamental modeling
technique that finds the best-fitting straight line to 
represent the relationship between inputs and an 
output. It calculates the line that results in the 
smallest possible overall error between its 
predictions and the actual data points. The model is 
represented by the equation: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑛𝑥𝑛 + 𝜖 (1) 
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where 𝑦 is the predicted value, 𝛽0 is the 
intercept, 𝛽1 … 𝛽𝑛 are the feature coefficients, and 𝜖 
is the error term. Its simplicity makes it highly 
interpretable [20]. 

2. Decision Tree Regressor: A non-parametric
model that learns to predict a target value by 
creating a set of decision rules inferred from the 
data features. It operates by recursively partitioning 
the feature space into several disjoint regions, 𝑅𝑚, 
forming a tree-like structure. For any new data point 
𝑥 that falls into a specific terminal region (a leaf 
node) 𝑅𝑚, the model's prediction is simply the mean 
of the training target values within that region. This 
predictive mechanism is defined as: 

𝑦̂ = 𝑓(𝑥) = ∑ 𝑐𝑚𝐼(𝑥 𝜖 𝑅𝑚)

𝑀

𝑚=1

 (2) 

where 𝑐𝑚 =
1

𝑁𝑚
∑ 𝑦𝑖𝑥𝑖𝜖𝑅𝑚

 (3) 

Here, 𝑀 is the total number of terminal regions 
(leaves), 𝑐𝑚 is the mean target value for the 𝑁𝑚 
training samples in region 𝑅𝑚, and 𝐼 is the indicator 
function. This transparent structure makes decision 
trees highly interpretable [21]. 

3. Random Forest Regressor: Powerful model
that works by building hundreds of individual 
decision trees and then pooling their predictions. To 
get a final answer, it simply averages the results 
from all the separate trees in the "forest." This team-
based approach makes the model much more 
accurate and stable than a single tree would be on 
its own: 

𝑦̂ =
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=1

 (4) 

where 𝐵 is the number of trees and 𝑓𝑏(𝑥) is the 
prediction of the b-th tree [22]. 

4. Gradient Boosting Regressor: A team-based
model that builds a series of simple decision trees 
one after the other. Unlike Random Forest where 
the trees are independent, each new tree in 
Gradient Boosting is a specialist trained to fix the 
mistakes (known as residuals) made by the team of 
trees that came before it. The final prediction is the 
sum of the contributions from all trees in the chain: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) (5) 

where 𝐹𝑚−1(𝑥) is the previous model, ℎ𝑚(𝑥) is 
the new weak learner (tree), and 𝛾𝑚 is the learning 
rate. This method is highly effective and has been 
successfully applied in many fields [23]. 

Model Evaluation. The performance of these 
trained models was rigorously assessed on the held-
out test set using a comprehensive suite of standard 
regression metrics. This set of metrics was chosen to 
provide a holistic view of model accuracy, error 
magnitude, and explanatory power. 

Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (6) 

where 𝑛 is the number of samples, 𝑦𝑖  is the 
actual value, and 𝑦̂𝑖  is the predicted value. 

Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 (7) 

Coefficient of Determination (R²): 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̂)2𝑛
𝑖=1

(8) 

where 𝑦̂ is the mean of the actual values. 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|

𝑛

𝑖=1

 (9) 

Results and discussion 

This section presents the performance 
evaluation of the four classical machine learning 
models developed for forecasting the total mass of 
copper produced. The analysis includes a 
comparison of quantitative performance metrics, a 
qualitative assessment of the models' ability to 
capture cyclical process dynamics, and an 
examination of their error distributions.  

Model Performance Overview. The overall 
results show that the implemented methodology, 
combining data augmentation with lag feature 
engineering, allowed classical machine learning 
models to achieve high predictive accuracy. The 
performance, evaluated using the coefficient of 
determination (R²), indicates that all models were 
able to explain a significant portion of the variance 
in the target variable. 

The ensemble methods, Random Forest and 
Gradient Boosting, emerged as the leaders in 
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performance, achieving R² scores of 0.974 and 
0.971, respectively. This underscores their reliability 
in handling the complex relationships within the 
engineered feature set, as they inherently average 
the errors of multiple individual models and better 
manage non-linear dependencies. The Linear 
Regression model also demonstrated strong 
performance with an R² of 0.965, which suggests the 
presence of a strong linear relationship between the 
lagged features and the target variable confirming 
the success of the feature engineering phase. The 
standalone Decision Tree model proved to be the 
least effective, with an R² of 0.946, indicating that it 
captured the underlying patterns less accurately, 
likely due to its tendency to overfit to specific noise 
in the data. A visual comparison of the R² scores is 
provided in Figure 1.  

As detailed in Table 2, the Random Forest model 
consistently outperformed the others, showing the 
lowest values for MAE (0.088), RMSE (0.111), and 
MAPE (98.8). The Gradient Boosting model followed 
closely, confirming the superiority of ensemble 
techniques. Conversely, the Decision Tree model 
demonstrated the highest error across all metrics, 
which aligns with its lower R² score and confirms its 
position as the least accurate model in this 
comparative study. 

Table 2 - Comprehensive Performance Metrics for All 
Models 

Model MAE RMSE R2 MAPE (%) 
Random 
Forest 

0.0883 0.1112 0.9743 98.80 

Gradient 
Boosting 

0.0929 0.1177 0.9713 114.82 

Linear 
Regression 

0.1041 0.1303 0.9648 110.80 

Decision 
Tree 

0.1276 0.1607 0.9464 161.93 

Forecasting of Cyclical Process Dynamics. 
Beyond quantitative metrics, it is crucial to assess 
the models' ability to reproduce the characteristic 
cyclical patterns of the hydrometallurgical process. 
Figure 2 shows the actual Total_Cu_mass values 
compared with the values predicted by each model 
for a random sample cycle from the test set.  

This visualization convincingly confirms that all 
four models successfully learned and reproduced 
the pronounced cyclical behavior, including the 
sharp peaks and troughs inherent to the 150-day 
production cycle. This qualitative result is highly 
significant, as it validates that the feature 

engineering strategy specifically, the creation of lag 
features effectively provided the models with the 
necessary historical context to understand the time-
series dynamics. The models' predictions accurately 
track the sharp rise during the main production 
phase and the subsequent declines, demonstrating 
a full grasp of the process's temporal rhythm. 
Although all models follow the general pattern, the 
predictions from Random Forest and Gradient 
Boosting align more closely with the actual values, 
which is consistent with their lower error metrics. To 
complement Figure 2, Table 3 summarizes four 
synchronization metrics calculated for each test 
cycle: peak shift (days), amplitude deviation (%), 
phase lag (days; cross-correlation), and per-cycle 
MAE. Across models, the phase lag is essentially zero 
(0.00 ± ≤0.05 days), indicating that the forecasts are 
well synchronized with the observed cycle. Gradient 
Boosting and Random Forest achieve the lowest per-
cycle MAE (0.09 ± 0.01), while Linear Regression is 
slightly higher (0.10 ± 0.01) and Decision Tree is the 
highest (0.13 ± 0.01). Both ensemble models tend to 
underestimate cycle amplitude (−14.05 ± 2.84% and 
−12.23 ± 2.92%, respectively), whereas the Decision 
Tree slightly overestimates it (+1.02 ± 4.90%). The 
near-zero peak shifts (e.g., −2.34 ± 35.44 days for 
Gradient Boosting and −0.46 ± 35.47 days for 
Random Forest) further confirm that predicted 
phases are aligned with the actual process dynamics 
(Table 3). 

Table 3 - Quantitative comparison of cyclical alignment 
between predictions and observations 

Model Peak shift 
(days) 

Amplitude 
deviation 
(%) 

Phase 
lag 
(days) 

MAE 
per 
cycle 

Linear 
Regression 

−0.34 ± 
35.12 

−5.38 ± 4.51 0.00 ± 
0.00 

0.10 ± 
0.01 

Decision 
Tree 

0.98 ± 
35.12 

1.02 ± 4.90 0.00 ± 
0.05 

0.13 ± 
0.01 

Random 
Forest 

−0.46 ± 
35.47 

−12.23 ± 
2.92 

0.00 ± 
0.00 

0.09 ± 
0.01 

Gradient 
Boosting 

−2.34 ± 
35.44 

−14.05 ± 
2.84 

0.00 ± 
0.00 

0.09 ± 
0.01 
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Figure 1 - Comparison of the Coefficient of Determination (R²) 

Analysis of Prediction Errors. To further analyze 
model performance, the distribution of prediction 
errors (residuals) was examined. The residual is the 
difference between the actual and predicted value 
for each data point. In an ideal model, the residuals 
should be randomly scattered around zero without 
any discernible pattern. 

Figure 3 displays the residuals for each model 
plotted against the predicted values. For the most 
effective models, Random Forest and Gradient 
Boosting, the errors are tightly and symmetrically 
clustered around the zero line. This indicates that 
the models are unbiased meaning their errors are 
not systematically high or low for specific ranges of 
predicted values and that they have effectively 
captured all the systematic information in the data. 
The residuals for Linear Regression and, most 
dispersed. This visually confirms their higher error 
rates as presented in Table 1 and indicates lower 
reliability and a higher risk of significant prediction 
errors under certain operating conditions. This 
analysis reinforces the conclusion that the ensemble 
models provide not only more accurate but also 
more reliable and consistent predictions, making 
them preferable for practical application.  

To deepen the error analysis beyond accuracy 
scores and visuals, we perform formal residual 
diagnostics; the results are summarized in Table 4, 

that reports residual diagnostics on the test set. The 
mean residuals are approximately zero for all 
models (|bias| ≤ 3×10⁻⁴), confirming the absence of 
systematic shift. Random Forest exhibits the 
smallest spread and error (SD = 0.1115; RMSE = 
0.1115), followed by Gradient Boosting (0.1183), 
Linear Regression (0.1306) and Decision Tree 
(0.1605). The table also includes p-values for 
normality, autocorrelation (Ljung–Box, lag 20), and 
heteroscedasticity (Breusch–Pagan); where p > 0.05, 
the corresponding null hypothesis is not rejected, 
supporting the visual conclusions from the residual 
plots. 

Table 4 - Residual diagnostics on the test set 

Model Mean 
residual 

SD residual RMSE 

Linear 
Regression 

−0.000319 0.130644 0.130644 

Decision Tree −0.000057 0.160467 0.160467 

Random 
Forest 

−0.000004 0.111513 0.111513 

Gradient 
Boosting 

−0.000061 0.118252 0.118252 
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Figure 2 - Actual vs. Predicted Values for a Sample Cycle 

Figure 3 - Residual plots for the random cycle 

Conclusions 

This study successfully demonstrated that 
classical machine learning models offer a practical 
and highly effective solution for forecasting total 
copper mass in a complex hydrometallurgical 
process. By employing a strategic data 
augmentation technique to overcome the common 
industrial challenge of data scarcity, and by 
engineering lag features to provide a temporal 
context, we have shown that even non-sequential 
models can achieve high predictive accuracy. The 
results clearly indicate that ensemble methods, 
specifically Random Forest and Gradient Boosting, 
are superior in this task, delivering the highest R² 
values and the lowest prediction errors. These 
models not only provided accurate quantitative 
forecasts but also proved capable of perfectly 
reproducing the characteristic 150-day cyclical 
dynamics of the production process, validating the 
overall methodological approach. 

The primary contribution of this work is 
providing an accessible, interpretable, and data-
efficient alternative to more complex deep learning 

architectures. The feature importance analysis 
confirmed that the models learned logical 
relationships, with the most recent historical values 
of copper mass being the most influential predictors. 
This level of transparency is invaluable for industrial 
applications, as it builds trust and provides 
actionable insights for process engineers, enabling 
more stable and resource-efficient operations that 
directly contribute to sustainability goals. 

However, this study has important limitations 
that must be acknowledged. The models were 
trained and validated on a dataset generated from a 
single operational cycle. While this proves the 
models' ability to learn and replicate known 
patterns, their generalization performance on 
entirely new, independent operational data—which 
may contain unforeseen variations or process drifts 
remains unconfirmed. Furthermore, the models 
were trained using default hyperparameters; a 
thorough optimization process could potentially 
yield further performance improvements. 

Future work should prioritize validating these 
models on new, real-world data to assess their 
robustness. To further improve predictive power, 
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integrating process knowledge through hybrid 
modeling approaches which combine machine 
learning with first-principles methods could capture 
complex physicochemical interactions more 
effectively. Ultimately, this research provides a 
strong foundation for developing reliable, AI-driven 
forecasting tools. By enabling more predictable and 
optimized production cycles, these tools can reduce 
waste and energy consumption, advancing the 
metallurgical industry's alignment with circular 
economy principles and enhancing overall 
operational sustainability. 
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ТҮЙІНДЕМЕ 
Өнеркәсіптік гидрометаллургияда өндірісті дәл болжау процесті оңтайландыру үшін 
маңызды, алайда оған көбінесе ауқымды тарихи деректердің тапшылығы кедергі келтіреді. 
Бұл зерттеу жалпы мыс массасын болжау үшін күрделі тереңдетіп оқыту әдістеріне 
деректерді үнемдейтін және түсінікті балама ретінде классикалық машиналық оқыту 
модельдерінің тиімділігін көрсетеді. Біз екі негізгі стратегияға негізделген әдістемені 
қолдана отырып, төрт модельді, Кездейсоқ орман (Random Forest), Градиентті бустинг 
(Gradient Boosting), Шешімдер ағашы (Decision Tree) және Сызықтық регрессияны (Linear 
Regression) бағаладық: деректерді толықтыру (аугментация) арқылы шектеулі 150 күндік 
деректер жиынтығын 10 000 модельденген циклге (шамамен 1,5 миллион деректер нүктесі) 
дейін синтетикалық түрде кеңейту және 10 қадам алға болжау міндеті үшін модельдерге 
уақыттық перспектива беру мақсатында 10 күндік кідіріс белгілерін құру. Нәтижелер 
болжаудың айрықша дәлдігін көрсетті, бұл ретте ансамбльдік әдістердің артықшылығы 
дәлелденді. Кездейсоқ орман моделі ең жоғары нәтиже көрсетіп, R² 0.974, MAE 0.088 және 
RMSE 0.111 мәндеріне қол жеткізді, одан сәл ғана қалып қойған Градиентті бустинг (R² 0.971) 
болды. Барлық модельдер өндіріс процесінің айқын 150 күндік циклдік динамикасын сәтті 
анықтап, нөлге жуық фазалық кідірісті (0.00 ± ≤0.05 күн) көрсетті. Жаңа, тәуелсіз деректердегі 
өнімділік қосымша тексеруді қажет етсе де, бұл жұмыс деректері шектеулі өнеркәсіптік 
ортада сенімді болжау құралдарын әзірлеу үшін тұрақты және ашық негіз қалайды. 
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АННОТАЦИЯ  
Точное прогнозирование объемов производства в промышленной гидрометаллургии имеет 

решающее значение для оптимизации процессов, однако его часто затрудняет нехватка 

обширных исторических данных. Данное исследование демонстрирует эффективность 

классических моделей машинного обучения как экономичной с точки зрения данных и 

интерпретируемой альтернативы сложным методам глубокого обучения для 

прогнозирования общей массы меди. Мы оценили четыре модели, Случайный лес (Random 

Forest), Градиентный бустинг (Gradient Boosting), Дерево решений (Decision Tree) и 

Линейную регрессию (Linear Regression) используя методологию, основанную на двух 

ключевых стратегиях: синтетическое расширение ограниченного набора данных за 150 дней 

до 10 000 смоделированных циклов (приблизительно 1,5 миллиона точек данных) с 

помощью аугментации данных, и создание 10-дневных лаговых признаков для 

предоставления моделям временной перспективы для задачи прогнозирования на 10 шагов 

вперед. Результаты показали исключительную точность прогнозирования, при этом 

ансамблевые методы продемонстрировали превосходство. Модель Случайного леса 

показала наилучшие результаты, достигнув R² 0.974, MAE 0.088 и RMSE 0.111, за ней с 

небольшим отставанием следует Градиентный бустинг (R² 0.971). Все модели успешно 

уловили отчетливую 150-дневную циклическую динамику производственного процесса, 

демонстрируя почти нулевое фазовое запаздывание (0.00 ± ≤0.05 дня). Хотя 

производительность на новых, независимых данных требует дополнительной проверки, 

данная работа создает надежную и прозрачную основу для разработки надежных 

инструментов прогнозирования в промышленных условиях с ограниченным объемом 

данных. 

Ключевые слова: машинное обучение, гидрометаллургия, прогнозирование временных 
рядов, аугментация данных, извлечение меди. 
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