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Isothermal laminar flow of non-newtonian fluid with yield stress in a pipe
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ABSTRACT

This paper considers the development of an isothermal laminar flow of viscoplastic fluid with
yield stress in a pipe. A characteristic feature of such a flow is the formation of a non-deformable
region in which the fluid behaves like a solid. This phenomenon significantly complicates the
numerical solution of the equations of viscoplastic fluid flow, since traditional methods cannot
adequately describe the behavior of the fluid in this region. The novelty of this work resides in
the application of the effective molecular viscosity methodology and the Bingham-Papanastasiou
model, which made it possible to perform an end-to-end calculation of the isothermal flow
taking into account the non-deformable region. In the course of the calculations, the velocity and
pressure distributions were derived for Reynolds numbers from 71.2 to 740.8 and Bingham
numbers in the range from 1.225 to 17.01. An increase in the Reynolds number to Re = 740.8 and
a decrease in the Bingham number to Bn = 1.225 lead to a reduction in the region with maximum
velocities and a change in the input axial velocity distribution. The radial profiles of the axial
velocity remain the same in all cross-sections from z/R = 10 to z/R = 40, which indicates the
establishment of a steady-state flow regime of viscoplastic fluid, in which a constant velocity core
is formed in the cross-section of the pipe.

Keywords: viscoplastic fluid flow, effective molecular viscosity approach, yield stress, bingham-
papanastasiou model.
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Introduction

Several theoretical studies focus on the flow of
Bingham non-Newtonian fluids [[5], [6]]. The initial

Non-Newtonian fluids with yield stress are  boundary value problem related to Bingham fluid
encountered in various industrial processes, such as ~ motion is examined by Luckring, who proves the
the transportation of paraffinic crude oil in  existence and uniqueness of a strong solution

underground and underwater pipelines in offshore
fields, as reported by several authors [[1], [2], [3],

(4]].

Non-Newtonian fluids have a natural time (fluid
time scale). The relaxation time of viscoelastic The mathematical

under specific assumptions about the data [5].
Luckring also shows that the solution exists globally
over time when the data is small and approaches a
periodic solution when the external force is time-
periodic.

model describing three-

fluids, the time scale of thixotropic fluids, and the  dimensional steady Bingham fluid flow in a

time scale of viscoplastic fluids (the ratio of plastic ~ confined region under threshold slip boundary
viscosity to vyield stress) are examples of non-  conditions is discussed by Baranovskii [6]. It is

Newtonian fluid time scales.

assumed by Baranovskii that the flows can slip
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along solid surfaces when shear stresses reach a
certain critical value. A weak formulation of this
problem is developed using the variational
inequality approach. The necessary conditions for
the existence of weak solutions are determined,
along with the corresponding energy estimates [6].

The challenge in numerically modeling
viscoplastic fluid flow lies in the presence of a rigid
(undeformed) region within the flow field. In the
literature, two categories of methods have been
suggested to tackle this mathematical problem. The
first approach, commonly referred to as the
regularization method, is extensively utilized by
many researchers and involves representing the
effective molecular viscosity as a continuous
function [[7], [8], [9], [10], [11], [12], [13], [14]]. The
exponential formula introduced by Papanastasiou
represents the most widely adopted variant of the
regularization method [8]. This methodology is
straightforward to implement, as the regularized
equation transforms the mathematical problem
into a viscous one. The criterion for determining
whether the flow region is deformable or
undeformable becomes irrelevant, since the
deformation rate tensor approaches zero, as noted
by authors [[9], [10]]. Consequently, the rigid part
of viscoplastic fluid flow can be estimated with
sufficient accuracy.

Another method, conceptually more intricate,
is derived from the theory of variational
inequalities and takes advantage of Lagrange
multiplier techniques. For a thorough and precise
mathematical examination of the associated
variational inequalities, refer to Duvaut and Lions
[15]. This method simplifies the problem by
transforming it into the minimization of an
extended Lagrangian functional. The resulting
saddle-point problem has been addressed by
various researchers using a Uzawa-type algorithm
[[16], [17], [18]]. The primary benefit of the
extended Lagrange method lies in its integration of
the constitutive equation, which facilitates the
identification of undeformed regions through a
zero strain rate tensor and provides a clear
distinction between deformable and non-
deformable regions. Computational and theoretical
studies include analyses of lid-driven cavity flow by
several authors [[19], [20], [21]]. Flow around a
cylinder has been investigated by Roquet et al.,
[22]. Additionally, flow in converging geometries
has been studied by Coupez et al., [23].

To study the non-isothermal flow of viscoplastic
fluid within the pipe, the aforementioned method
is discussed in detail in [24]. A numerical method
was developed to solve the system of motion and
energy equations using a TVD scheme. Special
attention is given to the velocity-pressure problem,
where the Bingham model is incorporated (without
a regularization procedure) using Lagrange
multiplier methods and extended Lagrange/Uzawa
methods by Vinay et al., [24]. The results obtained
for the stationary solution highlight the impact of
temperature variations on the flow pattern,
particularly concerning deformable and non-
deformable regions. Specifically, in pipe flow, the
temperature field varies along the flow direction.

It should be noted that the solution method is
labor-intensive and has been applied in only a few
studies of viscoplastic fluids [24].

The regularization method by Papanastasiou is
widely applied to solve various practical problems,
such as the non-isothermal flow of Bingham fluid in
cases of sudden pipe expansion, as noted by
authors [[25], [26]].

As highlighted in the review, multiple facets of
the motion and heat transfer of Bingham fluids
have been explored. However, there is a limited
number of studies offering an in-depth analysis of
the isothermal flow of viscoplastic fluids.

The objective of this study is to examine the
isothermal flow of viscoplastic fluids through a
numerical solution of a system of motion
equations, using a regularization method by
Papanastasiou and an effective molecular viscosity
approach by Bird et al. [27].

Isothermal laminar flow of viscoplastic fluid
Problem statement

An isothermal flow of viscoplastic fluid enters a
pipe with an average inlet velocity (see Fig. 1). At
specific yield stress values, a stagnation zone forms
near the pipe wall, where the flow velocity
becomes zero. The Reynolds (Re) and Bingham (Bn)
numbers are derived from the characteristics of
viscoplastic fluid at the pipe inlet. The pipe inner
diameter is D = 0.05 m and the pipe length is L =1
m, resulting in a length-to-radius ratio of L/R = 40.

The inlet profile of axial velocity transforms,
and in a certain section, a velocity distribution
corresponding to the flow of Bingham fluid is
established. Our task is to define the establishment
of the Bingham fluid profile as a dependent variable
of the Reynolds and Bingham numbers.

— 40 ——
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Figure 1 - Diagram of the isothermal flow of
viscoplastic fluid within pipe

Bingham-Papanastasiou model.

Based on the rheological behavior of
viscoplastic fluids, the effective molecular viscosity
can be represented as outlined by various authors
[[27], [28], [29], [30], [31]]:

’ :{ﬂpw'ﬂl’ o (1)

0, if 7] <7,

The expressions in formula (1) are provided by
Pakhomov et al., [32].

However, due to mathematical complexities,
Eg. (1) cannot be used without regularization. For
this purpose, the formula presented by
Papanastasiou is employed [8]. In this scenario, the
effective molecular viscosity is constrained as the

shear rate approaches zero|;'/| — 0, as observed by
Pakhomov et al. [32]:

1—exp(—10°%|y
Hete = Ky +To[ p|(7| |y|):| (2)
Fundamental equations of heat transfer.
The equations governing mass and heat
transfer of fluid can be expressed in non-
dimensional form within a cylindrical coordinate
system, as presented by authors [[28], [31]]:
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here
Z=z/RT=r/RU=u/u;V=v/u;P=p/pu;
Re is the Reynolds number.

The plastic viscosity and yield stress coefficient
dependences on temperature are provided by
Pakhomov et al., [32].

Boundary conditions.
No slip on the pipe wall, as described by
Pakhomov et al., [32]:

F=1:U=V =0 (6)

Symmetry on the pipe axis, as described by
Pakhomov et al., [32]:

Vv

r=0: ==
or or

(7)

Constant velocity at the pipe inlet, as described
by Pakhomov et al., [32]:

7=0:U=1V=0 8)

Neumann boundary at the pipe outlet, as
described by Pakhomov et al., [32]:

U oV

I=L/R:—=—=
o oz

0 (9)

Numerical implementation.

The numerical results are obtained using a
control volume method applied on a staggered grid.
The algorithm for solving the system of Eq. (3)-(6) in
terms of the "velocity-pressure components" is
detailed by Pakhomov et al., [32].

The equations were discretized using the finite
volume method on a staggered grid. The pressure
field p and the velocity values u, and v, each one
had its own unique grids, resulting in individual
control volumes. The power-law scheme was
applied to the convective terms in the differential
equations [33]. Second-order central difference
methods were used for diffusive flows [32].
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The SIMPLE algorithm was used to solve Eq. (3)-
(5), with each iteration involving the following
steps.

All numerical predictions are conducted using
an "in-house" code.

To verify the calculations, known results for
laminar flow of Bingham fluid can be utilized. Figure
2 displays the computed data for the radial
distribution of non-dimensional axial velocity (a)
and dynamic viscosity (b) across the section of a
pipe [34].
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Figure 2 — Non-dimensional axial velocity (a) and
dynamic viscosity (b) profiles across the section of a
pipe. The lines illustrate the authors' calculations, while
the points represent calculated data [34]:
1-Bn=0;2-Bn=5;Sc=10; g/R=0.1; Riy/R =0.55;
up/p1 = 10; Re = p1Ru1/p1 = 1000

The computations were performed for two
mixed fluids: a Newtonian fluid flowing in the
center of a pipe ( ;/R<0.55) and a Bingham fluid
ring introduced in the wall-adjacent region
(R,/R=(R,+q)/R=0.65-1). The intermediate
mixing layer's thickness between the Newtonian
fluid and Bingham fluid is q/R =0.1. Notably, in
this case, the mathematical model was adapted by
incorporating a diffusion equation with a specified
Schmidt number Sc =z / (p,Dg) =10 [34]. In this
context, the subscripts "1" and "2" denote the
Newtonian fluid and Bingham fluid, respectively,
while Ds represents the coefficient of molecular
diffusion. Comparisons were conducted between

the isothermal laminar flow regime of the
Newtonian fluid (1) and the viscoplastic fluid
characterized by a specified Bingham number (Bn).
The isothermal laminar flow regime of the
Newtonian fluid (1) was compared to the
viscoplastic fluid characterized by a specified
Bingham number of Bn=7,R/(xu,)=5 (2). A
notable quantitative consistency was observed
between our numerical results and the findings
reported in [34].

Discussion and Results

The simulations were performed for a pipe with
a length L = 1 m and a diameter D = 2R = 0.05 m
(L/R = 40). The calculations were carried out in a
pipe with a diameter of D = 2R = 0.05 m and a
length of L = 1 m (L/R = 40). The average flow
velocity at the pipe inlet U, varied from 0.05 to 0.20
m/s. The paraffinic oil density is constant and equal
to 850 kg/m3. The Reynolds and Bingham numbers
vary: range from 71.2 to 740.8 and
Bn=17,, 2R/ (x,,u ) ranges from 0.17 to 17.01.

—eo— 2z/R=10.00 —e— 2z/R=20.00 —@— z/R=30.00 —e— z/R=40.00
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Figure 3 — Radial profile of axial velocity (a), velocity
vector contours (b) and pressure (c) under the operating
conditions: y, =0.10 m/s, u, =0.05974Pa-s, ¢, =

2.03286 Pa, Re=71.2, and Bn =17.01
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Figure 3 shows the calculated data for an
average velocity of U, =0.10 m/s, plastic viscosity of

U, =0.05974 Pa-s, yield stress of 7, = 2.03286

Pa, Reynolds numbers Re = 71.2, and Bingham
numbers Bn =17.01.

The radial distributuions of axial velocity U
exhibit a core of constant values (see Figure 3a),
characteristic of viscoplastic fluid flow. The core of
constant velocities U occupies a radius fromr/R=0
to r/R = 0.67, starting from the section z/R = 10 to
z/R = 40, i.e. the establishment of a radial profile of
axial velocity across the length of the pipe takes
place.

The velocity vector contours clearly
demonstrate the rapid transformation of the inlet
profile of axial velocity U and the establishment of
viscoplastic fluid flow (see Figure 3b).

The pressure contours show the distribution of
P along the pipe length (Figure 3c). The pressure
remains constant across the pipe's cross-section
and drops throughout its length. The value of
dimensionless pressure is equal to P =89 or p =
765.5 Pa at the beginning of the pipe and decreases
along the pipe length. The pressure difference of
Ap = 765.5 Pa ensures the movement of visco-
plastic fluid along the length of a pipe.

The results derived from the calculations under
operating parameters U, = 0.10 m/s, My =0.02438

Pa-s, 7, =0.11937 Pa, Re = 174.3, and Bn = 2.45

are presented in Figure 4. The radial profiles of axial
velocity U have a core of constant values along the
radius from r/R = 0.0 to r/R = 0.43, starting from the
section z/R = 2 to z/R = 40 along the pipe length
(see Figure 4a). A decrease in the Bingham number
Bn = 2.45 and a growth in the Reynolds number Re
= 174.3, results in to a reduction in the core length
of constant data of U and, accordingly, a growth in
a magnitude of the axial velocity (see Figure 4a). It
is evident that the axial velocity profiles are
established starting from the section z/R=2 and
correspond to the velocity distribution of a
Bingham fluid (see Figure 4a).

The velocity vector contours U clearly
illustrate the establishment of a steady flow of
viscoplastic fluid and the location of the core of
constant velocities along the radius and length of a
pipe (see Figure 4b).
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Figure 4 — Radial profile of axial velocity (a), velocity
vector contours (b) and pressure (c) under the operating
conditions: u, =0.10 m/s, u, =0.02438 Pa-s, 7, =

0.11937 Pa, Re =174.3, and Bn = 2.45

The pressure contours P show a reduction in
their values throughout the length of the pipe
(Figure 4c). The Bingham number is Bn = 2.45,
almost 7 times less than in the previous case. This
shows a decrease in the effect of plastic viscosity
and yield stress on hydraulic flow resistance. The
pressure loss is AP = 114.8 Pa, which is lower than
the earlier situation (Figure 4c).

The computed results at operating parameters:
U =0.20 m/s, u,, =0.05974 Pa-s, 7, =2.03286

Pa, Re = 142.2, and Bn = 8.51 were presented in
Figure 4. As observed from the radial distribution of
axial velocity U, the core of constant values of U
has the same value both in the radial direction and
along the pipe length, indicating the establishment
of the flow of viscoplastic fluid (see Figure 5a). The
region with the core of constant values of U is
located from z/R = 1 to z/R = 40 throughout the
length of the pipe (Figure 5a).

Velocity vector contours show establishment of
the axial velocity profile U of viscoplastic fluid
throughout the length of the pipe (Figure 5b).
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Figure 5 — Radial profile of axial velocity (a), velocity
vector contours (b) and pressure (c) under the operating
conditions: u, =0.20 m/s, x,, =0.05974 Pa-s, 7, =

2.03286 Pa, Re = 142.2, and Bn = 8.51

The contours of the dimensionless pressure P
indicate a reduction in hydraulic loss of viscoplastic
fluid flow (see Figure 5c). The pressure reduction is
Ap =986 Pa and ensures laminar viscoplastic fluid
flow in a pipe (see Figure 5c).

Figure 6 shows the calculated data at operating
parameters: U, = 0.20 m/s, u, = 0.02438 Pa-s,

Ty, = 0.11937 Pa, Re = 740.8, and Bn = 1.225. The

increase in the Reynolds number to Re = 740.8 and
the decrease in the Bingham number to Bn = 1.225
lead to a reduction in the core of maximum
velocities U (see Figure 6a). The appearance of the
initial section of the transformation of the inlet
axial velocity profile can be seen. The radial
distributions of axial velocity U exhibit the same
shape in all cross-sections between z/R = 6 and z/R
= 40. This corresponds to Bingham fluid flow with a
constant core velocity U in the pipe cross-section
and indicates the establishment of a steady-state
laminar flow regime of viscoplastic fluid (Figure 6a).

The contours of the velocity vectors depict a
detailed picture of flow through the cross-section
and throughout the pipe's length (Figure 6b). One
can observe the flow core with a constant value of

axial velocity U and a decrease in its value to zero
at the wall. The Bingham number Bn = 1.225 leads
to a reduction in head loss relative to the earlier
case. The pressure loss Ap is 238 Pa, which was

sufficient for viscoplastic fluid to flow throughout
the pipe's length (Figure 6c).
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Figure 6 — Radial profile of axial velocity (a), velocity
vector contours (b) and pressure (c) under the operating
conditions: u, =0.20 m/s, u, =0.02438 Pa-s, 7, =

0.11937 Pa, Re =348.6, and Bn =1.225
Conclusions

The paper discusses the findings of the study on
Laminar isothermal viscoplastic fluid flow in the
pipe, taking into account yield stress and plastic
viscosity. The calculated data were obtained by
numerically solving the system of equations for
viscoplastic  fluid flow. The computations
determined the effect of the Bingham number and
Reynolds number on the axial velocity profiles and
pressure distribution. The regions of constant axial
velocity values are shown depending on the values
of the Bingham number and Reynolds number. The
larger the Bingham number and the lower the
Reynolds number, the longer the core of constant
velocity in the cross-section of the pipe. These
findings contribute to a deeper understanding of
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viscoplastic flow dynamics, with significant
implications for various engineering applications
and fluid transport systems. In further studies, the
molecular effective viscosity approach and the
regularization method will be used to calculate
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KybbipaafFbl akKbILWTbIK Weri 6ap HbIOTOHAbIK eMeC CYMbIKTbIKTbIH,

n3oTepmMuAnbIK 1aMUHAP/Ibl afbiHbI

! Beknbaes T., ! PamasaHosa ., ! BocuHos [l., 2 Myxammapg, HypasnaH

1 Camb6aes YHusepcumemi, Aamamel, KazakcmaH

2 MeHAudukaH CynmaH Ndpuc yHusepcumemi, TaHxcyHe Manaum, Manalizus
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TYAIHAEME

Ocbl XKYMbICTa KybbipAafbl aKKbIWTbIK wWeri 6ap TYTKbIP NAACTUK CYMbIKTbIKTbIH, M30TEPMUANBIK,
NaMWMHAPAbIK  afblHbIHbIH,  Aamybl KapacTblpbliagbl. MyHAal afblHFa ToH epekwenik -
AedopmaumanaHbainTbiH aitmak nainga 6on1aapl, OHAA CYMbIKTbIK KaTTbl 3aT CUAKTbI SPEKET eTes;.
Byn Ky6bl/IbIC TYTKbIP NAACTUKANbIK CYMbIKTbIK afblHbIHbIH, TEHAEYNEPIH CaHAbIK LWewyai eaayip
KMbIHAATaAbl, OUTKEHI A3CTypAi agicTep Byn aimaKTaFbl CyMbIKTbIKTbIH dPEKETIH KEeTKINIKTI Typae
cunaTTal anmanapl. *KymbICTbIH, }KaHANbIFbI TUIMAT MONEKYNANbIK TYTKbIPAbIK d4iCHAMACbIH KaHe
BuHram-ManaHactacuy mogeniH KongaHy 6onbin Tabblnagpl, 6yn aedopmaumanaHbaiTbiH
aliMaKTbl €ecKepe OTbIPbIN, W30TEPMUANbIK afblHAbI TYNKINIKTI ecenteyre MyMKiHAIK 6epai.
Ecenteynep apkpinbl 1.225-teH 17.01-re gewiHri BuHram caHgapbl meH 71.2-aeH 740.8-re peliiHri
PeliHONbAC CaHAapbl YWIH KbINAAMAbIK MeH KbICbIM yaecTipimaepi anbiHabl. PeiHonbac
CaHblHbIH, Re = 740.8-re geiiH ecyi aHe BUHram caHbiHbiH Bn = 1.225-ke aelliH TemeHaeyi
aiMaKTbIH, MaKCUManapl XblAAaMAbIKNEH KbICKApyblHA XaHe aKkcuangpl XblAAamMAabIKTbiH, Kipe
6epicTeri TapanybliHbIH, ©3repyiHe aKeneai. AKCManabl KblNgaMabIKTbIH, pagvangsl npodunbaepi
z/R = 10-paH z/R = 40-Kka AeniHri 6apabik KengeHeH, kumanapaa 6ipaent 6onbin Kanagbl, 6y
KyObIpAblH KenAeHeH, KMMAacbiH4A TYpaKTbl KbINAAMAbIK AA4pocbl Naiga 6onaTblH TYTKbIP
NNACTUKANbIK CYMbIKTbIK afblHbIHbIH, TYPAKTbl PEXKUMIHIH, OPHATbINFaHbIH KepceTea;.

TyliiH ce30ep: TYTKbIp NNACTUKANbIK CYMbIKTbIK afblHbl, TUIMAI MONEKYNaNbIK TYTKbIPbIK
annaparbl, aKKbIWTbIK weri, BuHrem-ManaHacracuy mogaeni.
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U3oTepmuyeckoe NnammHapHoe TeueHMe HEHbIOTOHOBCKOM }KUAKOCTU C
npeaenom Tekyyectu B Tpybe

! Beknbaes T., ! PamasaHosa I'., ! BocuHos [l., 2 Myxammap, HypasnaH

1 Satbayev University, Anmamel, KazaxcmaH
2 YHusepcumem [MeHOudukaH Cyamax Udpuc, TaHOxcyHe Manum, Manatizus

AHHOTALUMUA

B HacToswwei paboTe paccmaTpuBaeTcsi pasBUTUE M30TEPMUYECKOTO JIaMWMHAPHOTO TeYeHWs
BA3KOMNACTMYHOM KMAKOCTM C MpeAenom Tekyyectv B Tpybe. XapaKTepHoW OCOBeHHOCTbo
TaKoro TeueHus sABaseTca obpasoBaHue Hegedopmupyemoit 061acTv, B KOTOPOW MKUAKOCTb
BedeT ceba Kak TBepAoe Tesno. ITO fAB/NEHWE 3HAYMTENbHO YC/IOXKHAET UYMCIEeHHOE pelueHue
YPaBHEHWI TEUEHWUs BA3KOMIACTUYHOMN KMAKOCTU, TaK KaK TPaAULMOHHbIE MeTOAbl He MOryT

Moctynuna: 18 Hoabpa 2024 afeKBaTHO ONMCaTb MOBeJeHUe XKUAKOCTU B 3ToW obnacTu. HoBusHa paboTbl 3ak/iouaeTca B
PeueHsupoBaHue: 24 HoAbpa 2024 NPUMEHEHUU MeToA0NOTMN 3OPEKTUBHOW MONEKYNAPHOM BA3KOCTM M mopenu bBuHrama-
MpuHATa B Neyatsb: 4 dexabpA 2024 ManaHacTacuy, YTO NO3BO/IMIO NPOBECTU CKBO3HOM PacyeT U30TEPMUYECKOrO TEUEHUS C YYETOM

Hegedopmupyemoit obnactu. B xoae pacyetoB 6binn MonyyeHbl pacnpeseneHus CKopocTu U
OaBneHunn ansa uncen buHrama B avanasoHe ot 1.225 ao 17.01 v uncen PeliHonbaca oT 71.2 go
740.8. YBennueHue uncna PeitHonbaca ao Re = 740.8 1 cHUKeHUe yncna buHrama go Bn = 1.225
NPUBOAAT K COKPALWEHU0 061acTV C MaKCUMabHbIMM CKOPOCTAMM U U3MEHEHUIO BXOLHOMO
pacnpeaeneHus akcuManbHOM CKOPOCTU. PagunanbHble NPoduAM akcuanbHOM CKOPOCTH OCTakoTCA
OAMHAKOBLIMM Ha BCEX MonepeyHbix ceyeHunax oT z/R = 10 go z/R = 40, yTo yKasbiBaeT Ha
YCTaHOB/NIEHNE CTALMOHAPHOIO PEXMMA TeYyeHUs BA3KOMIACTUYHOMN KUAKOCTU, B KOTOPOM
06pasyeTcA NOCTOAHHOE AP0 CKOPOCTM B NOMEPEYHOM CeYEHUU TPYObI.

Kntoyesbie cn08a: TeYeHNE BA3KOMIACTUYHON XKUAKOCTM, annapaT 3GPeKTUBHOW MONEKYNAPHOM
BA3KOCTM, Npeaen Tekyyectn, moaensb buHrem-NManaHacrtacuy.
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