Electrothermal processing of chrysotile-asbestos wastes with production of ferroalloy and extraction of magnesium into the gas phase

1Akylbekov Ye.Ye., 1Shevko V.M., 2Aitkulov D.K., 1Karataeva G.E.

1M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
2National Center on complex processing of mineral raw materials of the Republic of Kazakhstan, Almaty, Kazakhstan

*Corresponding author email: shevkovm@mail.ru

ABSTRACT

The article presents the results of an experimental study on the processing of wastes from chrysotile-asbestos production at Kostanay Minerals JSC. An electrothermal technology for the extraction of magnesium and siliceous ferroalloy from the chrysotile-asbestos wastes is proposed. The influence of the amount of coke and steel shavings on the technological parameters of the obtained alloys is determined. The results of derivatographic and SEM analyses of the chrysotile-asbestos waste samples are presented. The studies included planning experiments using the second-order rotatable designs (Box-Hunter plans), graphical optimization of technological parameters, and electric melting of a charge in a graphite crucible using a single-electrode arc furnace. Adequate regression equations were obtained explaining the effect of the amount of coke and steel shavings added to the chrysotile-asbestos waste on the extraction degree of silicon into the alloy and the silicon concentration in the alloy. By the electric melting of the charge, high-quality FS25 grade ferrosilicon with a silicon content of 24.4-29.2% and FS45 grade ferrosilicon with a silicon content of 41.6-45% were obtained. It was established that FS45 grade ferrosilicon with the extraction degree of silicon into the alloy from 75 to 85.4% is formed in the presence of 33.6-38% of coke and 16-20.8% of steel shavings. FS25 grade ferrosilicon is formed in the presence of 30-38% of coke and 29.4-40% of steel shavings; the extraction degree of silicon is 68.6-73.8%.

Keywords: chrysotile-asbestos waste, coke, steel shavings, rotatable planning, electric smelting, arc furnace, ferrosilicon

Introduction

Kazakhstan is among the top three leaders in the world in the extraction and processing of chrysotile ores. In accordance with [1], the Zhetikara deposit located in the Kostanay region ranks fifth in the world in terms of chrysotile-asbestos reserves. Chrysotile-asbestos production from ores of this deposit is organized at Kostanay Minerals JSC. Up to 5 million tons of chrysotile-asbestos are extracted annually at Kostanay Minerals JSC [2].

When enriching 1 ton of the chrysotile-asbestos ore by the dry gravity method [3], 0.92 tons of wastes are formed, which contain 39.45-40.25% of MgO, 36.0-38.67% of SiO₂, 2.8-4.89% of Fe₂O₃, 1.98-3.18% of FeO, 1.03-1.31% of Al₂O₃, 0.16-0.24% of NiO, 0.025-0.77% of Cr₂O₃, 0.75-1.96% of CaO, 0.3-0.46% of CO₂, 0.12-0.48 of SO₃, 11.48-13.67% of loss on ignition, 0.1-0.15% of others (TiO₂, MnO,
K₂O, Na₂O) [[4], [5], [6]]. Thus, the main components in the wastes are MgO and SiO₂ [[7], [8], [9]]. 1.16 million tons of magnesium, 0.73 million tons of silicon, and 9.0 thousand tons of nickel are annually lost at Kostanay Minerals JSC. There are some methods of chrysotile-asbestos waste processing using acid leaching [[10], [11]]. The disadvantage of these methods is their multi-stage. For example, according to [10], the production of magnesium from serpentinite includes grinding the waste, leaching with HCl, separating the solution from the precipitate, purifying and concentrating the solution, obtaining synthetic carnallite, its multi-stage dehydration to obtain magnesium chloride raw materials for electrolysis, electrolysis to obtain magnesium and chlorine.

We propose an electrothermal technology for magnesium and siliceous ferroalloy production from chrysotile-asbestos wastes with fewer stages compared to the hydrometallurgical method.

Initial materials. Research Methodology

According to [[12], [13]], chrysotile-asbestos wastes contain serpentine (3MgO*2SiO₂*2H₂O) – 57%, talc (3MgO*4SiO₂*H₂O) – 17%, brucite (Mg(OH)₂) – 9%, forsterite (Mg₂SiO₄) – 6–7%, magnesium, and iron oxides (MgO, FeO, Fe₂O₃) – 8–9%. DTA and SEM analyses of a chrysotile-asbestos waste sample, performed using a derivatograph Q-1500D (DEMO) and a scanning electron microscope, are shown in Figures 1 and 2.

![Figure 1 - Derivatogram of the chrysotile-asbestos waste](image)

Figure 1 – Derivatogram of the chrysotile-asbestos waste

It is seen that the weight loss of the chrysotile-asbestos waste is 12.5%. According to the SEM analysis, the initial waste sample contained 46.0% of MgO, 35.8% of SiO₂, 2.4% of Al₂O₃, 0.9% of Na₂O, 1.5% of K₂O, 0.9% of CaO, 1.2% of Fe₂O₃, 1.4% of ZnO, 1.0% of PbO, 0.3% of MnO, 10% of others. For melting, the chrysotile-asbestos waste sample was used calcined at 800°C for 30 minutes; its composition was 50% of MgO, 38.9% of SiO₂, 2.7% of Al₂O₃, 1% of Na₂O, 1.6% of K₂O, 1% of CaO, 1.3% of Fe₂O₃, 1.5% of ZnO, 1.1% of PbO, 0.3% of NiO, and 0.1% of Cr₂O₃. Coke was used produced on the West Siberian Metallurgical Plant and contained 88.2% of solid carbon, 1.5% of volatiles, 1.2% of S, 9.1% of ash (including 4.5% of SiO₂, 2.3% of Al₂O₃, 1.5% of Fe₂O₃, 0.5 of ∑ (CaO and MgO), 0.1% of others. Steel shavings contained 98.2% of Fe, 1.1% of C, 0.3% of Si, 0.2% of Mn, and 0.2% of others.

![Figure 2 - SEM analysis of the chrysotile-asbestos waste](image)

Figure 2 - SEM analysis of the chrysotile-asbestos waste
The studies included electric melting using a single-electrode arc furnace, shown in Figure 3.

![Figure 3 – Single-electrode arc furnace](image)

1 – furnace shell, 2 – chromium-magnesite lining, 3 – coal-graphite hearth, 4 – graphite crucible, 5 – coal-graphite layer, 6 – transformer TDZF-1002, 7 – graphite electrode, 8 – lower current lead, 9-12 – control ammeters and voltmeters, 13 – electrode movement mechanism, 14 – flexible part of a low-voltage circuit, 15 – furnace cover

The electric melting of the charge was carried out in a single-electrode arc furnace (up to 15 kVA power) lined with chromium-magnesite bricks. The bottom electrode was made of a graphite block. A graphite crucible (d = 6 cm, h = 12 cm) was placed on the hearth. The furnace in the upper part was closed with a removable cover with holes for placing a graphite electrode with a diameter of 3 cm and a gas outlet. The crucible was preliminarily heated by electric arc for 20-25 min. After that, the first portion of the charge (200-250 g) was loaded into the crucible. It was melted for 3-6 minutes. Then, every 4-6 minutes, 200-250 g portions of the charge were loaded in the crucible. During 1 experiment, 1500-2000 g of the charge was melted. Occasionally, the temperature at the outlet of gases from the furnace was measured with a GM2200 pyrometer and the temperature of the outer graphite crucible surface at the reaction zone level was measured with a tungsten-rhenium thermocouple. The temperature under the furnace cover during the melting period was 900-1050°C, and the temperature by the crucible wall was 1750-1850°C. During the melting period, the current strength was 350-400A, and the voltage was 30-35V. Electricity was supplied to the furnace from transformer TDZF-1002. The required power was maintained by a thyristor regulator. After the electric melting, the furnace was cooled for 6-7 hours. The graphite crucible was removed from the furnace and broken. The resulting ferroalloy was weighed and analyzed by the atomic absorption method on the AAS-1 instrument (Germany) to determine the metals’ content. The ferroalloy density was determined by the pycnometer method according to [14]. Then, based on the density according to [15], the silicon content in the alloy was determined. Some alloys were analyzed by means of a scanning microscope (ASS-1N).

To determine the optimal parameters of the process, the second-order rotatable designs (Box-Hunter plans) were used [16]. To establish the regression equations for changing the optimization parameters, the technique [17] was used, and to construct the volumetric and horizontal images of the optimization parameters, the technique [18] was used. The optimal parameters were determined by combining the horizontal images in one figure. This method was described by us in articles [[19], [20], [21], [22]].

Research results

Table 1 shows the planning matrix and research results. During the research, the effect of the coke (K) and steel shavings (St) amount (in % of the chrysotile-asbestos waste weight) on the extraction degree of silicon into the alloy (α) and the silicon concentration in the alloy (C), % was studied.

<table>
<thead>
<tr>
<th>№</th>
<th>Variables</th>
<th>Coded view</th>
<th>Natural view</th>
<th>Technological parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X1</td>
<td>X2</td>
<td>Coke, %</td>
<td>Steel shavings, %</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>43.7</td>
<td>36.5</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>32.3</td>
<td>36.5</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>43.7</td>
<td>19.5</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>32.3</td>
<td>19.5</td>
</tr>
<tr>
<td>5</td>
<td>1.41</td>
<td>0</td>
<td>46</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>1.41</td>
<td>0</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1.41</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-1.41</td>
<td>38</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>28</td>
</tr>
</tbody>
</table>
Using the data from Table 1, we found the regression equations according to the method [17]:

\[\alpha_{Si} = -361.43 + 22.47 \cdot K + 3.65t - 0.272 \cdot K^2 - 0.03 \cdot t^2 - 0.033 \cdot K \cdot t, \]

(1)

\[CSi = -1313.17 + 8.999 \cdot K - 0.392 \cdot t - 0.116 \cdot K^2 + 0.004 \cdot t^2 - 0.017 \cdot K \cdot t. \]

(2)

Based on equations 1 and 2, according to [18], the volumetric and horizontal images of \(\alpha_{Si} \) and \(CSi(alloy)=f(K, St) \) were constructed (Figure 4).

![Volumetric and planar images of \(\alpha_{Si} \) and \(CSi(alloy) \)](image)

Figure 4 – Effect of coke and steel shavings on the extraction degree of silicon into the alloy (A) and the silicon concentration in the alloy (B).

It can be seen that the surface of \(\alpha_{Si(alloy)} = f(K, St) \) has an extremal view with a maximum (\(\alpha_{Si}=84.5\% \)) at 37.0% of coke and 26.5% of steel shavings. The extremal view of the surface is due to the fact that at 36-38% excess coke (when \(\alpha_{Si(alloy)} \) decreases), the electrical conductivity of the furnace bath increases. To maintain the required current, the electrodes together with the arc are moved to the upper horizons of the bath. The reaction zone also moves up. The throat is heated, and the filter layer of the charge decreases. As a result, the loss of silicon with gaseous SiO increases and \(\alpha_{Si(alloy)} \) decreases. It is seen that \(\alpha_{Si} \) varies from 45 to 84.5% (x and y points). \(\alpha_{Si(alloy)} \) from 64.6 to 84.5% is achieved at 30-37.0% of coke and 30-40% of steel shavings (shaded area of Figure 4 (I)). The silicon concentration in the alloy varies from 23.4 to 45.1%. FS45 grade ferrosilicon was formed at a small amount (<22%) of steel shavings in a large range of coke (from 32 to 42.5% of coke (shaded area of Figure 4 (II)). In the case of 30-46% of coke and increased amount of steel shavings (from 23 to 40%), FS25 grade ferrosilicon was formed (shaded area of Figure 4 (B)).

To determine the optimal conditions, the planar \(\alpha_{Si} \) and \(CSi \) images were combined (Figure 5). The values of technological parameters at the boundary points of the obtained ferroalloys are shown in Table 2.

![Combined information about \(\alpha_{Si} \) and \(CSi \)](image)

Figure 5 – Combined information about \(\alpha_{Si} \) and \(CSi \).

Table 2 – Technological parameters at the points of Figure 5

<table>
<thead>
<tr>
<th>Point in Figure 5</th>
<th>Coke, %</th>
<th>Steel shavings, %</th>
<th>(\alpha_{Si}), %</th>
<th>(CSi), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>32.3</td>
<td>16.8</td>
<td>70.0</td>
<td>41.0</td>
</tr>
<tr>
<td>a</td>
<td>33.6</td>
<td>18.7</td>
<td>75.0</td>
<td>41.0</td>
</tr>
<tr>
<td>b</td>
<td>38.0</td>
<td>20.6</td>
<td>79.0</td>
<td>41.0</td>
</tr>
<tr>
<td>d</td>
<td>38.0</td>
<td>16.0</td>
<td>76.0</td>
<td>45.0</td>
</tr>
<tr>
<td>e</td>
<td>34.4</td>
<td>16.0</td>
<td>75.0</td>
<td>44.7</td>
</tr>
<tr>
<td>f</td>
<td>32.5</td>
<td>16.0</td>
<td>70.0</td>
<td>41.4</td>
</tr>
<tr>
<td>u</td>
<td>30.0</td>
<td>29.4</td>
<td>69.4</td>
<td>29.0</td>
</tr>
<tr>
<td>K</td>
<td>30.0</td>
<td>40.0</td>
<td>68.0</td>
<td>32.4</td>
</tr>
<tr>
<td>n</td>
<td>30.9</td>
<td>40.0</td>
<td>70.0</td>
<td>34.1</td>
</tr>
<tr>
<td>z</td>
<td>34.4</td>
<td>40.0</td>
<td>75.3</td>
<td>25.9</td>
</tr>
<tr>
<td>x</td>
<td>36.2</td>
<td>40.0</td>
<td>75.0</td>
<td>25.4</td>
</tr>
<tr>
<td>y</td>
<td>36.2</td>
<td>35.6</td>
<td>76.7</td>
<td>29.0</td>
</tr>
<tr>
<td>m</td>
<td>32.2</td>
<td>32.5</td>
<td>75.0</td>
<td>29.0</td>
</tr>
<tr>
<td>h</td>
<td>30.3</td>
<td>30.4</td>
<td>70.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>

In view of the fact that when the amount of coke is >36-38%, the right side of the Figure 5 surface is practically the same as the left (with a large amount of coke), it is advisable to consider the left side of the figure.
Based on Figure 5 and Table 2, it is possible to determine the optimal technological parameters for obtaining ferrosilicon of FS45 and FS25 grades [23] with different extraction of Si into the alloy. So, for $\alpha_{Si} \geq 75\%$, FS45 with $C_{Si} = 41-45\%$ is formed in the region abde (33.69-36.2% of coke and 16-20.8% of steel shavings). For α_{Si} from 70 to 75%, FS45 ferrosilicon with $C_{Si} = 41-44.7\%$ is formed in the region ftac at 32.3-34.4% of coke and 16-18.7% of steel shavings. FS25 ferrosilicon with α_{Si} (alloy) $\geq 75\%$ and $C_{Si} = 26.7-29\%$ is formed in the region mxyz at 32.2-38% of coke and 32.5-40% of steel shavings. FS25 ferrosilicon is also formed in the region hnzm. However, in this area, α_{Si} decreases to 70%. In this case, the amount of coke can be changed from 30.3 to 34.4% and the number of steel shavings from 30.4 to 40%.

Figure 6 shows the ferroalloys obtained from two charge compositions: 1st charge – 58% of chrysotile waste, 22% of steel shavings, and 20% of coke; 2nd charge – 63% of chrysotile waste, 23% of coke, and 14% of steel shavings.

![Photos of resulting ferroalloys](image)

Figure 6 – Photos of resulting ferroalloys

The silicon content in the alloy was determined based on its density (P, g/cm3) by the pycnometric method according to the equation:

$$C_{Si} = 252.405 - 101.849 * P + 18.209 * P^2 - 1.213 * P^3$$ [15] (3)

Density of the first ferroalloy was 6.4 g/cm3, and density of the second one – 5.47 g/cm3. The silicon content in the first alloy was:

$$C_{Si} = 252.405 - 101.849 * 6.4 + 18.209 * 6.4^2 - 1.213 * 6.4^3 = 24.4\%$$ (4)

and in the second alloy:

$$C_{Si} = 252.405 - 101.849 * 5.47 + 18.209 * 5.47^2 - 1.213 * 5.47^3 = 41.6\%$$ (5)

The SEM analysis of the first alloy is represented in Figure 7.

![SEM analysis of the alloy](image)

Figure 7 – SEM-analysis of the alloy

It is seen that the alloy produced from the first charge composition contains 29.2% of silicon. Judging by the silicon content, in accordance with [23], the produced alloys correspond to ferrosilicon of FS25 and FS45 grades. The obtained ferroalloys do not contain magnesium. The extraction degree of magnesium into the gas phase was at least 92-98%. The rest of magnesium (2-8%) passed into the slag. For the condensation of magnesium from the gas phase, it is recommended to use the Magnetterm method [24].

Conclusion

The results obtained during the electric melting of chrysotile-asbestos waste allow us to draw the following conclusions:

- FS45 grade ferrosilicon with the silicon extraction degree from 75 to 85.4% is formed in the presence of 33.6-38% of coke and 16-20.8% of steel shavings;
- FS25 grade ferrosilicon with the silicon extraction degree from 68.6 to 73.8% is formed in the presence of 30-38% of coke and 29.4-40% of steel shavings;
- the main amount of magnesium (92-98%) passes into the gas phase; the resulting ferroalloys do not contain magnesium.
Ферро­корытпа алу және газ фазасына магний алу арқылы хризотил-асбест өндірісінің қалдықтарының электротермиялық өңдеу

1 Акылбеков Е. Е., 1 Шевко В. М., 2 Айткулов Д. К. 1 Каратаева Г. Е.

1 М. Д. изд. атт. ОП Казахстан университет, Шымкент, Казахстан
2 Казахстан Республикасының минералдық шикізатты кешенді кайта өңдеу жөніндегі ұлттық ұлтұрал, Алматы, Казахстан

Электротермическая переработка отходов хризотил-асбестового производства с получением ферросплава и извлечением магния в газовую фазу

1 Акылбеков Е. Е., 1 Шевко В. М., 2 Айткулов Д. К. 1 Каратаева Г. Е.

1 Южно-Казахстанский университет имени М. Ауэзова, Шымкент, Казахстан
2 Национальный центр комплексной переработки минерального сырья Республики Казахстан, Алматы, Казахстан
АННОТАЦИЯ
В статье приводятся результаты экспериментальных исследований по переработке отходов хризотил-асBESTового производства АО «Костанайские минералы». Предложена электротермическая технология извлечения магния и кремнистого ферросплава из отходов хризотил-асBESTового производства. Определены влияние количества кокса и стальной стружки на технологические параметры полученных сплавов. Представлены дериватограмма и растровая электронная микроскопия анализ проб отходов хризотил-асBESTового производства. Исследования проводились методом планирования экспериментов с использованием ротационных планов второго порядка (план Бокса-Хантера) с исследующей графической оптимизацией технологических параметров и электроплавкой шихты в графитовом тигле с использованием одноэлектродной дуговой печи. Получены адекватные уравнения регрессии влияния количества кокса и стальной стружки от массы хризотил-асBESTовых отходов на степень извлечения кремния в сплав и концентрацию в сплаве кремния. Электроплавкой шихты получен сортовой ферросилиций марки ФС25 с содержанием кремния 24,4-29,2% и ФС45 с содержанием кремния 41,6-45%. Ферросилиций марки ФС45 со степенью перехода в него от 75 до 85,4% Si образуется в присутствии 33,6-38% кокса и 16-20,8% стальной стружки. Ферросилиций марки ФС25 со степенью перехода в него 68,6-73,8% кремния образуется при 30-38% кокса и 29,4-40% стальной стружки.

Ключевые слова: хризотил-асBESTовые отходы, кокс, стальная стружка, ротационное планирование, электроплавка, дуговая печь, ферросилиций.

Информация об авторах:
Акылбеков Ербол Ергалиулы
Доктор технических наук, профессор кафедры «Технологии силикатов и металлургия» Южно-Казахстанского государственного технического университета им. М. Ауэзова, проспект Тауке Хана, 5, 160002, Шымкент, Казахстан, E-mail: e.akylbekov@bk.ru

Шеко Виктор Михайлович
Доктор технических наук, профессор кафедры «Технологии силикатов и металлургия» Южно-Казахстанского государственного университета имени М. Ауэзова, проспект Тауке Хана, 5, 160002, Шымкент, Казахстан, E-mail: shchevikov@mail.ru

Айткулов Досмурат Кызылбиевич
Доктор технических наук, профессор, научный руководитель Национального центра комплексной переработки минерального сырья Республики Казахстан, Жандосова, 67 050036, Алматы, Казахстан, E-mail: aitkulov_dk@mail.ru

Каратаева Гульнара Ергалиевна
Кандидат технических наук, ассистент профессора, доцент кафедры «Технологии силикатов и металлургия» Южно-Казахстанского государственного университета им. М. Ауэзова, проспект Тауке Хана, 5, 160002, Шымкент, Казахстан, E-mail: karatavg@mail.ru

References

