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ABSTRACT

This article presents a mathematical model in the form of static equations of dependencies of input
and output flows based on the equations of material and heat balance for the purposes of
operational planning and control of the complex technological complex of Vanyukov melting (PV).
Dynamic characteristics are presented for the purpose of controlling the thermal regime based on
the technology of the developed melting process with blowing from below. As a result of the study,
the developed mathematical model for controlling the smelting process when calculating the
material flows of the charge will allow tracking changes in the thermal state of the smelting (by
the copper content in the matte). This model can quite well describe the dynamics of the state of
the process, both when establishing the impacts aimed at increasing the heating of the furnace,
and at reducing its heating. Based on the equations, a computer model based on the dynamic
programming method in the MATLAB software package has been developed. The scientific novelty
lies in the fact that for the first time, the structure of a mathematical model has been developed
that describes the processes occurring in the over-tuyere zone and the sludge zone of the smelting
products.
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Introduction

reacting copper concentrate with oxygen in a molten
bath. In [2], several technologies have been
developed based on the principles of bath melting,

Smelting is one of the important processes in
copper metallurgical production, in which copper
and iron sulfides are oxidized to form molten matte
and slag. Flash smelting and pool smelting are the
main smelting technologies in copper production.
[1]. Copper concentrates react with oxygen directly
in the flash smelting process, which has the
advantages of high productivity and automatic
control. However, the flash-melting furnace requires
fine and dry materials to allow fast reactions. As a
result, feed preparation is required for a significant
process, and dust levels are relatively higher. It has a
limited ability to process scrap and other large
copper-bearing materials. Bath melting is an
alternative flash melting technology that involves

including IsaSmelt/Ausmelt, Noranda/El Teniente,
Vanyukov, and the recently developed Bottom
Blowing Smelting (BBS) process. In the article [3],
BBS technology has generated a lot of interest from
the copper industry due to its unique processing
features such as good feedstock adaptability, high
oxygen utilization and thermal efficiency, and
flexible performance. Articles [[4], [5]] say that in
2016, 13 BBS furnaces were built with a capacity of
1600 thousand tons of copper per year. Basic
research, including slag thermodynamics and melt
bath fluid dynamics, has been widely carried out in
recent years to understand and support the new
technology. Reviews [[6], [7]] summarize the
development of the copper BBS, including its history,
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features, and related basic research. The aim of the
research is to develop a mathematical model of the
dependence of input and output flows based on the
equations of material and heat balance for the
purposes of operational planning and control of the
complex technological complex of Vanyukov
melting.

Experimental part

The mathematical model of the Vanyukov
process, developed in the framework of this study,
is supposed to be used for the purposes of
operational planning and management of the
technological complex.

Therefore, the mathematical model of Vanyukov
melting, which is supposed to be built, is selected in
the class of static models based on the equations of
material and heat balance for the main components
of the input and output flows (copper-containing
raw materials, concentrate, coal, air, oxygen,
combustion gas, matte, slag, caisson temperature,
exhaust gases, melt, dust, etc., released and
absorbed heat) [[8], [9]].

The general structure of the model describing
the process, where the input variables are the flow
rates and the chemical composition of raw materials
(concentrate, coal, charge, clinker), revolutions,
oxygen-air mixture blowing (OAC), volumes and
composition of air, oxygen, combustible gas, etc. d.
and output variables of the furnace operation:
quantity and composition of output products,
including [10]:

- charge and content of Cu, Si, Mg, S, etc.;

- matte and its content of Cu, S, Zn, P, etc.;

- slag and its content of CaO, SiO,, MgO, etc.;

- exhaust gases and their content of CO, CO,,
CHy4, N3, O;, etc.;

- dust and the content in it of the main
components of input and output materials;

- waste (in fractions of the number of
components in the input materials).

The basic equation for the relationship between
the output variables of the model and the input ones
is:

G =27 Bj/x @ Gj (1),
G& - is the amount of the i-th

component in the k-th output product;

where

ﬂ;,k - coefficient of extraction (transition) of the

i-th component from the j-th input material to the k-

th output product;

(X; - the content of the i-th component in the j-

th input stream (material), in fractions of units;
G,- the amount of the j-th input (source)

material.

The general form of equation (1) implies the
possibility of taking into account all input material
flows containing the i-th component (substance),
which can be understood as a chemical element (for
example, copper Cu, carbon C, etc.) and a stable
compound (for example, oxides of calcium, silicon,
magnesium - Ca0, SiO;, MgO, respectively, etc.). The
choice of components (i), as well as the input (j) and
output (k) material flows taken into account in the
model, depends on the production technology and
the nature of the ongoing physical and chemical
processes. In this case, one can focus on
metallurgical calculations of material and heat
balances, which, as a rule, sufficiently reflect the
current level of understanding (knowledge) of the
technological features of a particular production. As
a rule, the choice of component (i) largely depends
on the respective output product: for matte, these
are copper, carbon, and alloying metals; for slag -
slag-forming oxides; for exhaust gases and dust -
volatile and gaseous components [11].

Recovery factors used in the model (ﬂ}/k) are
widely used in metallurgical calculations. Their value
is quite constant (stable) for a well-established
production technology and the required accuracy of
calculations performed using a mathematical model.
However, for individual components to determine
their content in the output products, setting the
values of recovery factors requires additional
calculations or the use of other calculated ratios. So
the carbon content in the matte depends on the
nature of the redox processes in the furnace
(oxidation or carburization) [[12], [13]].

When constructing a mathematical model of the
technological regime, the requirements of the
material balance must be observed as for individual
components:

f=1/G=Yi=1 Gk

and by the total number of input and output

material flows:

1j1=1 szzgc=1 Gy

The process of charge preparation. Calculation
of the amount and composition of the charge. In
the absence of experimental data and by analogy
with metallurgical calculations, we believe that
copper, carbon, silicon, manganese, phosphorus,
and sulfur can be considered as starting materials in
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the charge. After carrying out experimental studies
on an operating furnace, other components of the
raw materials and products of reactions occurring in
the furnace can be taken into account [[14], [15]].

The general equation for determining the mass
amount of components in the charge is:

Gen =2Xj=1Bjjen @ G, B =1

where j—index of initial (input) material flows —
concentrates (concl- bornite CusFeS,; conc2-
chalcopyrite - CuFeS,; conc3 - chalcocite - Cu,S),
fluxes (conc4 - bornite FeS,; conc5 - quartz Si0,;
concb - limestone - CaCOj3; conc7 - magnesite
MgCO;)

1) The amount of copper (Cu) in the charge:

Z =1 acu G aCO?‘LClGCO‘YIC1+aCOTlC2 GCOTlCZ

+ +aconc3Gconc3"‘ ach n Gen

Similarly, equations are written for calculating
the number of other components in the charge,
passing into it from the corresponding input material
flows containing these components.

2) Total charge:

Gch=2i

3) The composition of the charge, i.e. the
content of individual components (i) is determined
by the equation:

ignt

i G
1 _ Zch
ach - G
ch

Melting process. Calculation of the amount and
composition of the matte. The general equation for
determining the mass amount of components in the
charge is:

i
Gma‘

;}zlﬂ;/ma a;Gj =
ﬁiln.str/maal!n.str/maGma

(2)

where j - is the index of input material flows
coming out of the charge preparation process. When
calculating the amount of matte, all materials
containing the sum of copper in all forms (oxidized,
sulfide, etc.) For the conditions adopted in this
problem, the input copper-bearing flow is the charge
(index "ch"), the production charge (index "pch"),
oxygen in the blast (index "oxyg"), air (index "air"),
coal (index "coal"), converter slag (index "cslg"),
clinker (index "cl").

Theoretically, depending on the form of copper
in each material, the recovery factors from each
input material to the output product will be
different. Practically by analogy with the
metallurgical calculation, we can consider them the
same and use the average value of the copper

extraction coefficient from the matte (the last term
of equation 2).
1) The amount of copper (Cu) in the matte:

Cu_yn Cu Cu
Gma Jj= j/ma Gf ﬁch/ma h Gept
ﬁpch/ma

Cu
pchGpch"'.Bcslg/ms cslg cslg"'ﬁcl/ma cl G

Similarly, to equations, equations are written for
calculating the number of other components in the
matte passing into it from the corresponding input
material flows containing these components.

In equations, the index j means input material
flows containing the corresponding components
(copper, sulfur, etc.)

4) Total amount of matte:
= N GhatGrag =GEbAGRE G + GEL+

ignt
+G,’,,’ll¢’1+6 g

5) Matte composition, i.e. the content of
individual components (i), is determined by the
equation:

i
_ Gma

i
Oma = e
In metallurgical calculations, the composition of
the matte is usually given by the content of copper
and other components. In this case, the amount of
matte is determined by the equation:
GCu
Gma = ma/ Cur

ama
where a$% content of copper in the matte. The

amount of any component (i) in the matte is
determined by the expression:
Gma = Gma%ma-

Melt process. Calculation of the amount and
composition of slag. Components from the
feedstock and products of reactions occurring in the
furnace pass into the slag: oxide reduction,
oxidation, slag formation, etc.

The general expression for determining the
number of components in the slag is obtained from
the equation:

le =Z;lﬁ]l'/sla}i'6j (3)
1) The amount of calcium oxide (CaO) in the slag
CaO - n'BC/té(l) aCaOG .Br(;lcfl(;sl aCaOG

Cao Ca0 Cao
+ +ﬁpma/sl apmaGpma"' IBksl/sl 297 Gcsl
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Similarly, to this equation, equations are
written for calculating the amount and composition
of slag of other components.

Calculation of the total amount of slag:

G CaO + GSLOZ + GF3203 + GMgO + Glgnt

Calculation of the quantity and composition of
process off-gases. Exhaust technological gases are
formed due to the blast supplied to the furnace: air
(for combustion and transport of the pulverized coal
mixture), oxygen, gas and gaseous products of
chemical reactions of combustion, reduction,
dissociation, evaporation of crystallization and
ordinary moisture formed in the furnace, etc. [16].

Assuming that all input material flows are known
and given the chemical reactions occurring in the
furnace, it is possible to determine the mass amount
of the main (accounted for) components and
recalculate their content in the exhaust gases:

1) Gases from the reduction of charge oxides:

GCO _Z ]/Sla

Thermal balance of the smelting process and
the production of matte and slag in the Vanyukov
furnace. The main sources of heat are (per n kg of
charge):

1) Physical heat of the starting materials of the
charge:
Qmat > Mmat Cmat
where Q™# — heat materials;
MmMat — mass of m-th input material;
CImat — the average heat capacity of the m-th
input material;
Tmat —is the temperature of the m-th input
(initial) material.

mat
" Tm

2) Heat of charge:
Qch ZMmat

mat Tmat

3) Converter slag heat:
chl zMgsllat g?t Tcrglat

4) Total physical heat of materials:
Qmat Qch + chl

5) Air blast heat:
Q§=ZM,‘1‘" . Cccilir . Téli‘r‘

6) Heat of exothermic reactions

Exothermic reactions:
S+ 0, - S50,

Ca0 + Si0, — Ca,Si0,
Fe,0 + Si0, — Fe,Si0,
— comp
Qpy = — XY dH,- v
where Qg, - heat in melting;
= —(dH . Ms«02 dH. .My dH . Mg
QEx - ( T My, + T My, + T M

where the designation L corresponds to Ca,Si0,,
B-Fe,Si0,

7) Thermal energy due to fuel combustion (coal
combustion):
Qr =Xqr My
where g — the lower calorific value of fuel per
working mass, kl/kg

Qf =245 "My = qc,n, " Mc,ng + qc,m,, " Mc, iy,
where The main sources of heat consumption are
(per n kg of charge):

The heat removed from the process
products:
med Zn prod C}:lmd'Trﬁmd

8) The heat of matte:
1 prod prod prod
Qma=2Mmq "Chna “Thma

9) The heat of waste slag:

2 _ prod  ~prod mprod ign  ~ign  mign
Qsl_zMsl Csl Tsl +M.S‘l C T,

sl sl

10) The heat of the dust:

3 prod prod prod ign ign  mign
stt_szst Cdst Tdst +Mdst Cdst Tdst

11) The heat of gases:

Qdas=IMbas” - Cous” “ Toas
12) Heat of endothermic processes
Endothermic reactions:
2CuFeS; —» Cu,S + 2FeS + 0.55,
2CusFeS, — 5Cu,S + 2FeS + 0.55,
FeS, - FeS + 0.55,

MCOm
Qendo = Z dH, - —=F

Thermal balance:

Qma + Qs + Q3 + Qux + Q5
= Qtlh + Qszl + Qfleat + Q;as
+ Qendo

Development of a computer model for
controlling the thermal and material regimes of the
smelting process. A computer model for controlling
the furnace modes is developed in MATLAB Simulink
(see Figures 1-3). Figure 1 shows the general block
diagram of the Vanyukov smelting process control
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model for thermal and material conditions.
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Structural diagram
of thermal control

Structural diagram
of material control

Figure 1 — Structural diagram of thermal and material
control of the melting proces

As can be seen from Figure 1, the block diagram

of the mathematical model consists of two
subsystems: the heat balance calculation subsystem
and the material balance calculation subsystem. The
developed mathematical model for controlling the
smelting process can quite well describe the
dynamics of the state of the process, both when
establishing influences aimed at increasing the
heating of the furnace, and at reducing its heating.
Figures 2, 3 show: a subsystem for calculating
the heat balance, which will allow, when calculating
the material flows of the charge, to track changes in
the thermal state of the melt (by the copper content
in the matte) and the subsystems themselves for
calculating the material flows of the charge. These
subsystems for calculating the heat balance and
material flows of the charge consist of blocks of
mathematical operations and functional blocks of

the Simulink Library.

I Prodatt Qo

Produe1id
] ™
s

Figure 2 — Subsystem 1 for calculating the heat balance
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Figure 3 — Subsystem 2 for calculating the material flows
of the charge
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Figure 4 — Dynamics of changes in the copper content in
the matte in the transition process

As can be seen from Figure 4, an oscillatory
transient process in the furnace is observed if, after
the disturbance is applied, it will have the opposite
effect on the thermal state of the lower and upper
stages of heat exchange. In this case, the overshoot
value will be the greater, the more significant in
magnitude and sign this difference is. The most
predictable parameters affecting the copper content
in the matte are changes in the matte load, blast
moisture, and slag basicity.

The discussion of the results

The calculation of the dynamic characteristics of
the furnace should be based on fundamental
knowledge of the theory and practice of modern
"autogenous" processes, as well as the general
patterns of transient processes obtained using a
dynamic model of the melting process [17].
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The dynamic characteristics of the furnace
through the various impact paths vary considerably
depending on the properties of the molten raw
material, and the design and operating parameters
of the furnace. In this regard, it is advisable to
determine the static parameters from the model,
and the duration and magnitude of the delay of
transient processes in the object should be related
to the time of turnover of one volume of charge in
the furnace [[18], [19]].

The change in the oxygen concentration in the
blast and the flow of natural gas cannot be used as
parameters for controlling the copper content in the
matte. This is due to the variable influence of these
parameters on the thermal regime of the melt.
Forced regulation of natural gas flow and oxygen
concentration in the blast to control the copper
content in the matte can lead to results opposite to
those expected [20].

Conclusion

The work carried out in this research showed the
following results:

1) A mathematical model has been developed
for the dependence of input and output material
flows of the process of smelting copper concentrates
in the Vanyukov furnace.

2) On the basis of equations of material and heat
balance, the structure of a computer model has
been developed for the purposes of operational
planning and control of a complex technological
process of melting.

3) On the basis of models it is possible to form
the structure of a closed dynamic model (29-42),
which takes into account both the kinetics and
hydrodynamics of the processes flowing in the
Vanuykov melting processes. However, creating an
optimal control system is required to carry out
work on identifying the model and verifying its
adequacy, which requires the implementation of
quite complex, lengthy, labor-intensive, and
expensive studies, both the kinetics and
hydrodynamics of the process.

2) Under the conditions described, it will be

more efficient not to create a mathematical model
of the complex process of the copper smelting
process, but to develop a model for controlling this
process based on the experience, knowledge, and
intuition of operators-technologists working for a
long time at this facility.
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AHHOTAUMA

B paHHOW CTaTbe NPMBOAMTCA MaTemaTudecKas MOAE/Nb B BBMAE CTaTUYECKMX YpPaBHEHMit
3aBUCMMOCTEN BXOAHbIX M BbIXOAHbIX NOTOKOB Ha OCHOBE YpaBHEHMI MaTepuanbHOro M TEN/I0BOrO
6anaHca 4nA Lenei onepaTMBHONO MIaHWPOBAHUA M YNPABIEHUA C/NOMKHBIM TEXHONOTUYECKUM
Komniekcom nnasku BaHiokosa (MB). Ha ocHoBe ypaBHeHMi, pa3paboTaHa KommbloTepHas
MOZeNb, OCHOBaHHaA Ha MeToAe AMHAMMYECKOro MNporpaMMUpPOBaHUA B NPOrpaMMHOM
Komnnekce MATLAB. MccnenoBaHbl AMHAMUYECKME XapaKTEPUCTUKM M3MEHEHUA CoAepMXaHus
MeaM B WTENHE NPU M3MEHEHUM COAEPKaHUA KUCNOPOAA B AYTbe B NEPEXOAHOM PEXMME C Leblo
YrNpasieHWs TEeM0BbIM PEXMMOM Ha OCHOBE TEXHOJIOTMM pa3paboTaHHOro NpoLecca Naasku ¢
NPOAYBKOW CHM3y. B pesynbtate uccneposaHus, paspaboTaHHas maTemaTuyeckas MOZesb
ynpaBieHns NpPoLEeccOM MIaBKM MPM pacdeTe MaTepuasibHbIX MOTOKOB LWMXTbl MO3BOAMUT
OTC/I@XKMBATb M3MEHEHWA TEMNNOBOro COCTOAHMA MAaBKM (MO COAEpPMaHUI0 MeaM B LITeiHe).
[aHHas mogenb [OCTAaTOYHO XOPOLIO MOKET OMMcaTb AMHAMMKY COCTOSIHMA MpoLecca Kak npu
YCTaHOB/IEHWMM BO3AEMNCTBMI, HanpaBAEHHbIX Ha MOBbILUEHWE Harpesa neyn, Tak U Ha CHUMNKEHUe
ee Harpesa. HayyHas HOBM3HA 3aK/IIO4AETCA B TOM, 4YTO Brepsble paspaboTaHa CTPyKTypa
MaTeMaTUYeCcKoi MOoJenu, ONMCbiBaloLWen NpoLeccsl, NpoTekaowme B HagdypMeHHON 30He K
30He OTCTOA NPO/YKTOB NAABKM.

Kntodeebie €106a: TEXHONOMMYECKMUI KOMIMJIEKC, CUCTEMA YMpPaBieHWs, CTaTMYecKas MoZesb,
TEN/I0BOMN PEXMM, NIaBKa Meam
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